Summary

Cellular Toxicity of Nanogenomedicine in MCF-7 Cell Line: MTT assay

Published: April 03, 2009
doi:

Summary

The MTT assay is an easy and reproducible colorimetric assay for evaluation of cell viability based on reduction of yellow MTT and production of water insoluble purple formazan. Here, the viability of MCF-7 cells upon treatment of nanogenomedicine has been evaluated.

Abstract

Cytotoxicity of the futuristic nanogenomedicine (e.g., short interfering RNA and antisense) may hamper its clinical development. Of these, the gene-based medicine and/or its carrier may elicit cellular toxicity. For assessment of such cytotoxicity, a common methodology is largely dependent upon utilization of the 3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) assay which has been widely used as a colorimetric approach based on the activity of mitochondrial dehydrogenase enzymes in cells. In this current investigation, MCF-7 cells were inoculated in 96-well plate and at 50% confluency they were treated with different nanopolyplexes and subjected to MTT assay after 24 hours. Water soluble yellow MTT is metabolized by the metabolically active cells to the water insoluble purple formazan, which is further dissolved in dimethylsulfoxide and Sornson s buffer pH 10.5. The resultant product can be quantified by spectrophotometry using a plate reader at 570 nm.

Protocol

MCF-7 seeding in 96-well plate:

MCF-7 cells were cultured in 25 t-flask in medium containing Dulbecco’s Modified Eagle’s Medium (DMEM), 10% FBS, 100 U/ml penicillin, and 100 μg/ml streptomycin at 37°C with 5% CO2, 95% air and complete humidity. Once reached ~90% confluency, they were detached using 0.05% trypsin/EDTA and counted by means of trypan blue and hemocytometer. These cells were then resuspended at a concentration of 4×104 cells/cm2 and added onto 96-well plate (i.e., 250 μl/well) by an 8-channel pipette. For background absorption, some wells were remained cell-free, i.e. as blank control.

Treating cells with different nanopolyplexes:

At 40-50% confluency (48 hours post seeding), the cultivated cells were treated with nanostructured starburst polyamidoamine dendrimers (i.e., Superfect® and Polyfect®) and a novel test polymer following the transfection instruction provided by supplier. Cells were also treated with EGFR and scrambled antisense alone, and with the three different nanopolyplexes of these two oligonucleotides and with polymers (n=4). Four wells were remained untreated as control. After 4 hours the treatment media were removed and replenished with fresh media.

MTT assay for evaluating cell viability:

MTT assay was performed 24 hours after transfection. For this purpose, MTT solution was prepared at 1mg/ml in PBS and was filtered through a 0.2 µm filter. Then, 50 µl of MTT plus 200 µl of DMEM without phenol red were added into each well, except the cell-free blank wells. Cells were incubated for 4 hours at 37°C with 5% CO2, 95% air and complete humidity. After 4 hours, the MTT solution was removed and replaced with 200 µl of DMSO and 25µl Sorenson’s glycine buffer (glycine 0.1M, NaCl 0.1M, pH:10.5 with 0.1 NaOH). The plate was further incubated for 5 min at room temperature, and the optical density (OD) of the wells was determined using a plate reader at a test wavelength of 570 nm and a reference wavelength of 630 nm.

Discussion

The MTT assay is deemed to be a versatile method and accordingly the viability of the cells could be evaluated upon various treatments. The production of resultant formazan appears to be proportional to the level of energy metabolism in the cells. Therefore, it is possible to measure the metabolically activated cells even in the absence of cell proliferation. The amount of formazan produced is proportional to the amount of MTT in the incubation medium. While, the concentration of MTT which is required to achieve maximum amount of formazan produced may change upon utilization of different cell lines. Besides, having used this assay, very small number of living cells could be detected and the incidence of errors would be minimal since there is no need for washing steps. The absorption of formazan varies with cell number as well as pH which could be overcome with addition of buffer at pH 10.5 1. The color of formazan is stable for a few hours at room temperature 2. In the case of more than one plate, controls should be included in other plates as well. Nevertheless, this method suffers from some minor disadvantages: a) metabolically inactive cells cannot be discriminated with dead cells 3, b) MTT solution should be protected from light even though it could be stored at 4°C for a maximum of one month 2, c) it fails to validate drug stability in the medium, and d) cells used for MTT can not be subsequently used for any other assays.

It should be evoked that phenol red absorbs at 570 nm. Further, it has been previously reported that the phenol red possesses estrogen activity which may affect the cell growth pattern within some estrogen responsive cells, ensuing imprecise MTT results. To avoid such impact, we have utilized DMEM without phenol red 4.

Acknowledgements

The authors would like to acknowledge Stem Cell Technology and Shahid Ghazi Tabriz companies respectively for providing DMEM without phenol red and sterile water for injection as gifts.

Materials

Material Name Type Company Catalogue Number Comment
25 t-flask   Orange Scientific 5510100  
PBS   Sigma-Aldrich P3813  
Dulbecco’s Modified Eagle’s Medium – high glucose   Sigma-Aldrich D5671  
MTT   Sigma-Aldrich M2128  
FBS   Sigma-Aldrich F2442  
Penicillin 200,000 u/ml   CinnaGen CR7913  
Streptomycin 200 mg/ml   CinnaGen CR7912  
trypsin/EDTA   Sigma-Aldrich T3924  
trypan blue   Sigma-Aldrich T8154  
Superfect   Qiagen 301105  
Polyfect   Qiagen 301305  
EGFR antisense   MWG biotech    
Scrambled antisense   MWG biotech    
DMEM without phenol red   Gibco 11880  
Glycine   Sigma G8898  
hemocytometer   HBG    
8-channel pipette   TreffLab Transferpette 96.9918.10.1  
Disposable syringe filter   IWAKI 2052-025  
Plate reader equipped with 570 nm &630 nm filters   Biotek ELx808 ELX808  
96-well plate with lid (flat bottom)   IWAKI 3860-096  
Laminar flow hood   Esco class II Biosafety Cabinet    
CO2 Incubator   ASTEC    

References

  1. Plumb, J. A., Milroy, R., Kaye, S. B. Effects of the pH Dependence of 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide-Formazan Absorption on Chemosensitivity Determined by a Novel Tetrazolium-based Assay. Cancer Research. 49, 4435-4435 (1989).
  2. Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. Journal of Lmmunological Methods. 65, 55-55 (1983).
  3. Yang, M. Energy and Redox States in the C6 Glioma Cells Following Acute Exposure to Zn, Se +4 , and Se +6 and the Correlation with Apoptosis. Toxicology Mechanisms and Methods. 16 (1), 13-13 (2006).
  4. Spinner, D. M., Bartlett, J. M. S. . MTT Growth Assays in Ovarian Cancer, in Ovarian Cancer: Methods and Protocols. , 175-177 (2000).
check_url/1191?article_type=t

Play Video

Cite This Article
Ahmadian, S., Barar, J., Saei, A. A., Fakhree, M. A. A., Omidi, Y. Cellular Toxicity of Nanogenomedicine in MCF-7 Cell Line: MTT assay. J. Vis. Exp. (26), e1191, doi:10.3791/1191 (2009).

View Video