Summary

A Model of Reverse Vascular Remodeling in Pulmonary Hypertension Due to Left Heart Disease by Aortic Debanding in Rats

Published: March 01, 2022
doi:

Summary

The present protocol describes a surgical procedure to remove ascending-aortic banding in a rat model of pulmonary hypertension due to left heart disease. This technique studies endogenous mechanisms of reverse remodeling in the pulmonary circulation and the right heart, thus informing strategies to reverse pulmonary hypertension and/or right ventricular dysfunction.

Abstract

Pulmonary hypertension due to left heart disease (PH-LHD) is the most common form of PH, yet its pathophysiology is poorly characterized than pulmonary arterial hypertension (PAH). As a result, approved therapeutic interventions for the treatment or prevention of PH-LHD are missing. Medications used to treat PH in PAH patients are not recommended for treatment of PH-LHD, as reduced pulmonary vascular resistance (PVR) and increased pulmonary blood flow in the presence of increased left-sided filling pressures may cause left heart decompensation and pulmonary edema. New strategies need to be developed to reverse PH in LHD patients. In contrast to PAH, PH-LHD develops due to increased mechanical load caused by congestion of blood into the lung circulation during left heart failure. Clinically, mechanical unloading of the left ventricle (LV) by aortic valve replacement in aortic stenosis patients or by implantation of LV assist devices in end-stage heart failure patients normalizes not only pulmonary arterial and right ventricular (RV) pressures but also PVR, thus providing indirect evidence for reverse remodeling in the pulmonary vasculature. Using an established rat model of PH-LHD due to left heart failure triggered by pressure overload with subsequent development of PH, a model is developed to study the molecular and cellular mechanisms of this physiological reverse remodeling process. Specifically, an aortic debanding surgery was performed, which resulted in reverse remodeling of the LV myocardium and its unloading. In parallel, complete normalization of RV systolic pressure and significant but incomplete reversal of RV hypertrophy was detectable. This model may present a valuable tool to study the mechanisms of physiological reverse remodeling in the pulmonary circulation and the RV, aiming to develop therapeutic strategies for treating PH-LHD and other forms of PH.

Introduction

Heart failure is the leading cause of death in developed countries and is expected to increase by 25% over the next decade. Pulmonary hypertension (PH) – a pathological increase of blood pressure in the pulmonary circulation – affects approximately 70% of patients with end-stage heart failure; the World Health Organization classifies PH as pulmonary hypertension due to left heart disease (PH-LHD)1. PH-LHD is initiated by impaired systolic and/or diastolic left ventricular (LV) function that results in elevated filling pressure and passive congestion of blood into the pulmonary circulation2. Albeit initially reversible, PH-LHD gradually becomes fixed due to active pulmonary vascular remodeling in all compartments of the pulmonary circulation, i.e., arteries, capillaries, and veins3,4. Both reversible and fixed PH increase RV afterload, initially driving adaptative myocardial hypertrophy but ultimately causing RV dilatation, hypokinesis, fibrosis, and decompensation that progressively lead to RV failure1,2,5,6. As such, PH accelerates disease progression in heart failure patients and increases mortality, particularly in patients undergoing surgical treatment by implantation of left ventricular assist devices (LVAD) and/or heart transplantation7,8,9. Currently, no curative therapies exist that could reverse the process of pulmonary vascular remodeling, so fundamental mechanistic research in appropriate model systems is needed.

Importantly, clinical studies show that PH-LHD as a frequent complication in patients with aortic stenosis can improve rapidly in the early post-operative period following aortic valve replacement10. Analogously, high (>3 Wood Units) pre-operative pulmonary vascular resistance (PVR) that was, however, reversible on nitroprusside was sustainably normalized after heart transplantation in a 5-year follow-up study11. Similarly, an adequate reduction of both reversible and fixed PVR and improvement of RV function in LHD patients could be realized within several months by unloading the left ventricle using implantable pulsatile and non-pulsatile ventricular assist devices12,13,14. Currently, the cellular and molecular mechanisms that drive reverse remodeling in the pulmonary circulation and RV myocardium are unclear. Yet, their understanding may provide important insight into physiological pathways that may be therapeutically exploited to reverse lung vascular and RV remodeling in PH-LHD and other forms of PH.

A suitable preclinical model that adequately replicates the pathophysiological and molecular features of PH-LHD can be used for translational studies in pressure overload-induced congestive heart failure due to surgical aortic banding (AoB) in rats4,15,16. In comparison to similar heart failure due to pressure overload in the murine model of transverse aortic constriction (TAC)17, banding of the ascending aorta above the aortic root in AoB rats does not produce hypertension in the left carotid artery as the banding site is proximal of the outflow of the left carotid artery from the aorta. As a result, AoB does not cause left-sided neuronal injury in the cortex as is characteristic for TAC18, and which may affect the study outcome. Compared to other rodent models of surgically induced PH-LHD, rat models in general, and AoB in particular, prove to be more robust, reproducible and replicate the remodeling of the pulmonary circulation characteristic for PH-LHD patients. At the same time, perioperative lethality is low19. Increased LV pressures and LV dysfunction in AoB rats induce PH-LHD development, resulting in elevated RV pressures and RV remodeling. As such, the AoB rat model has proven extremely useful in a series of previous studies by independent groups, including ourselves, to identify pathomechanisms of pulmonary vascular remodeling and test potential treatment strategies for PH-LHD4,15,20,21,22,23,24,25.

In the present study, the AoB rat model was utilized to establish a surgical procedure of aortic debanding to study mechanisms of reverse remodeling in the pulmonary vasculature and the RV. Previously, myocardial reverse remodeling models such as aortic debanding in mice26 and rats27 have been developed to investigate the cellular and molecular mechanisms regulating the regression of left ventricular hypertrophy and test potential therapeutic options to promote myocardial recovery. Moreover, a limited number of earlier studies have explored the effects of aortic debanding on PH-LHD in rats and showed that aortic debanding might reverse medial hypertrophy in pulmonary arterioles, normalize the expression of pre-pro-endothelin 1 and improve pulmonary hemodynamics27,28, providing evidence for the reversibility of PH in rats with heart failure. Here, the technical procedures of the debanding surgery are optimized and standardized, e.g., by applying a tracheotomy instead of endotracheal intubation or by using titanium clips of a defined inner diameter for aortic banding instead of polypropylene sutures with a blunt needle26,27, thus providing for better control of the surgical procedures, increased reproducibility of the model and an improved survival rate.

From a scientific perspective, the significance of the PH-LHD debanding model does not solely lie in demonstrating the reversibility of the cardiovascular and pulmonary phenotype in heart failure, but more importantly, in the identification of molecular drivers that trigger and/or sustain reverse remodeling in pulmonary arteries as promising candidates for future therapeutic targeting.

Protocol

All procedures were performed following the "Guide for the Care and Use of Laboratory Animals" (Institute of Laboratory Animal Resources, 8th edition 2011) and approved by the local governmental animal care and use committee of the German State Office for Health and Social Affairs (Landesamt für Gesundheit und Soziales (LaGeSO), Berlin; protocol no. G0030/18). First, congestive heart failure was surgically induced in juvenile Sprague-Dawley rats ~100 g body weight (bw) (see Table of Materials</strong…

Representative Results

First, successful aortic debanding was confirmed by transthoracic echocardiography performed before and after the debanding procedure in AoB animals (Figure 6). To this end, the aortic arch was assessed in parasternal long axis (PLAX) B-mode view. The position of the clip on the ascending aorta in AoB animals and its absence after the Deb surgery was visualized (Figure 6A,B). Next, aortic blood flow was evaluated by pulsed-wave Doppler…

Discussion

Here, a detailed surgical technique for aortic debanding in a rat AoB model is reported that can be utilized to investigate the reversibility of PH-LHD and the cellular and molecular mechanisms that drive reverse remodeling in the pulmonary vasculature and the RV. Three weeks of aortic constriction in juvenile rats results in PH-LHD evident as increased LV pressures, LV hypertrophy, and concomitantly increased RV pressures and RV hypertrophy. Aortic debanding at week 3 post-AoB was able to unload the LV and fully reverse…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This research was supported by grants of the DZHK (German Centre for Cardiovascular Research) to CK and WMK, the BMBF (German Ministry of Education and Research) to CK in the framework of VasBio, and to WMK in the framework of VasBio, SYMPATH, and PROVID, and the German Research Foundation (DFG) to WMK (SFB-TR84 A2, SFB-TR84 C9, SFB 1449 B1, SFB 1470 A4, KU1218/9-1, and KU1218/11-1).

Materials

Amoxicillin Ratiopharm PC: 04150075615985 Antibiotic
Anti-BNP antibody Abcam ab239510 Western Blotting
Aquasonic 100 Ultrasound gel Parker Laboratories BT-025-0037L Echocardiography consumables
Bepanthen Bayer 6029009.00.00 Eye ointment
eye ointment
Carprosol (Carprofen) CP-Pharma 401808.00.00 Analgesic
Clip holder Weck stainless USA 523140S Surgical instruments
Fine scissors Tungsten carbide Fine Science Tools 14568-12 Surgical scissors
Fine scissors Tungsten carbide Fine Science Tools 14568-09 Surgical scissors
High-resolution imaging system FUJIFILM VisualSonics, Amsterdam, Netherlands VeVo 3100 Echocardiography machine. Images were acquired with pulse-wave Doppler mode, M-mode and B-mode
Isoflurane CP-Pharma 400806.00.00 Anesthetic
Ketamine CP-Pharma 401650.00.00 Anesthetic
Mathieu needle holder Fine Science Tools 12010-14 Surgical instruments
Mechanical ventilator (Rodent ventilator) UGO Basile S.R.L. 7025 Volume controlled respirator
Metal clip Hemoclip 523735 Surgical consumables
Microscope Leica M651 Manual surgical microscope for microsurgical procedures
Millar Mikro-Tip pressure catheters ADInstruments SPR-671 Hemodynamics assessment
Moria Iris forceps Fine Science Tools 11373-12 Surgical forceps
Noyes spring scissors Fine Science Tools 15013-12 Surgical scissors
Povidone iodine/iodophor solution B/Braun 16332M01 Disinfection
PowerLab ADInstruments 4_35 Hemodynamics assessment
Prolene Suture, 4-0 Ethicon EH7830 Surgical consumables
Rib spreader (Alm selfretaining retractor blunt, 70 mm, 2 3/4″) Austos AE-BV010R Surgical instruments
Serrated Graefe forceps Fine Science Tools 11052-10 Surgical forceps
Silk Suture, 4-0 Ethicon K871 Surgical consumables
Skin disinfiction solution (colored) B/Braun 19412M07 Disinfection
Spectra 360 Elektrode gel Parker Laboratories TB-250-0241H Echocardiography consumables
Sponge points tissue Sugi REF 30601 Surgical consumables
Sprague-Dawley rat Janvier Labs, Le Genest-Saint-Isle, France Study animals
Tracheal cannula Outer diameter 2 mm
Xylazin CP-Pharma 401510.00.00 Anesthetic

References

  1. Rosenkranz, S., et al. Pulmonary hypertension due to left heart disease: Updated recommendations of the cologne consensus conference 2011. International Journal of Cardiology. 154, 34-44 (2011).
  2. Rosenkranz, S., et al. Left ventricular heart failure and pulmonary hypertension. European Heart Journal. 37 (12), 942-954 (2016).
  3. Fayyaz, A. U., et al. Global Pulmonary vascular remodeling in pulmonary hypertension associated with heart failure and preserved or reduced ejection fraction. Circulation. 137 (17), 1796-1810 (2018).
  4. Hunt, J. M., et al. Pulmonary veins in the normal lung and pulmonary hypertension due to left heart disease. The American Journal of Physiology – Lung Cellular and Molecular Physiology. 305 (10), 725-736 (2013).
  5. Bursi, F., et al. Pulmonary pressures and death in heart failure: A community study. Journal of the American College of Cardiology. 59 (3), 222-231 (2012).
  6. Ryan, J. J., et al. Right ventricular adaptation and failure in pulmonary arterial hypertension. Canadian Journal of Cardiology. 31 (4), 391-406 (2015).
  7. Miller, W. L., Mahoney, D. W., Enriquez-Sarano, M. Quantitative Doppler-echocardiographic imaging and clinical outcomes with left ventricular systolic dysfunction: Independent effect of pulmonary hypertension. Circulation: Cardiovascular Imaging. 7 (2), 330-336 (2014).
  8. Kjaergaard, J., et al. Prognostic importance of pulmonary hypertension in patients with heart failure. The American Journal of Cardiology. 99 (8), 1146-1150 (2007).
  9. Shah, R., et al. Pulmonary hypertension after heart transplantation in patients bridged with the total artificial heart. ASAIO Journal. 62 (1), 69-73 (2016).
  10. Tracy, G. P., Proctor, M. S., Hizny, C. S. Reversibility of pulmonary artery hypertension in aortic stenosis after aortic valve replacement. The Annals of Thoracic Surgery. 50 (1), 89-93 (1990).
  11. Lindelow, B., Andersson, B., Waagstein, F., Bergh, C. H. High and low pulmonary vascular resistance in heart transplant candidates. A 5-year follow-up after heart transplantation shows continuous reduction in resistance and no difference in complication rate. European Heart Journal. 20 (2), 148-156 (1999).
  12. Martin, J., et al. Implantable left ventricular assist device for treatment of pulmonary hypertension in candidates for orthotopic heart transplantation-a preliminary study. European Journal of Cardio-Thoracic Surgery. 25 (6), 971-977 (2004).
  13. Gallagher, R. C., et al. Univentricular support results in reduction of pulmonary resistance and improved right ventricular function. ASAIO Transactions. 37 (3), 287-288 (1991).
  14. Beyersdorf, F., Schlensak, C., Berchtold-Herz, M., Trummer, G. Regression of "fixed" pulmonary vascular resistance in heart transplant candidates after unloading with ventricular assist devices. The Journal of Thoracic and Cardiovascular Surgery. 140 (4), 747-749 (2010).
  15. Hoffmann, J., et al. Mast cells promote lung vascular remodelling in pulmonary hypertension. European Respiratory Journal. 37 (6), 1400-1410 (2011).
  16. Litwin, S. E., et al. Serial echocardiographic-Doppler assessment of left ventricular geometry and function in rats with pressure-overload hypertrophy. Chronic angiotensin-converting enzyme inhibition attenuates the transition to heart failure. Circulation. 91 (10), 2642-2654 (1995).
  17. Rockman, H. A., et al. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America. 88 (18), 8277-8281 (1991).
  18. de Montgolfier, O., et al. High Systolic blood pressure induces cerebral microvascular endothelial dysfunction, neurovascular unit damage, and cognitive decline in mice. Hypertension. 73 (1), 217-228 (2019).
  19. Breitling, S., Ravindran, K., Goldenberg, N. M., Kuebler, W. M. The pathophysiology of pulmonary hypertension in left heart disease. American Journal of Physiology – Lung Cellular and Molecular Physiology. 309 (9), 924-941 (2015).
  20. Ranchoux, B., et al. Metabolic syndrome exacerbates pulmonary hypertension due to left heart disease. Circulation Research. 125 (4), 449-466 (2019).
  21. Zhang, H., Huang, W., Liu, H., Zheng, Y., Liao, L. Mechanical stretching of pulmonary vein stimulates matrix metalloproteinase-9 and transforming growth factor-beta1 through stretch-activated channel/MAPK pathways in pulmonary hypertension due to left heart disease model rats. PLoS One. 15, 0235824 (2020).
  22. Yin, J., et al. Sildenafil preserves lung endothelial function and prevents pulmonary vascular remodeling in a rat model of diastolic heart failure. Circulation: Heart Failure. 4 (2), 198-206 (2011).
  23. Yin, N., et al. Inhaled nitric oxide versus aerosolized iloprost for the treatment of pulmonary hypertension with left heart disease. Critical Care Medicine. 37 (3), 980-986 (2009).
  24. Breitling, S., et al. The mast cell-B cell axis in lung vascular remodeling and pulmonary hypertension. American Journal of Physiology – Lung Cellular and Molecular Physiology. 312 (5), 710-721 (2017).
  25. Kerem, A., et al. Lung endothelial dysfunction in congestive heart failure: Role of impaired Ca2+ signaling and cytoskeletal reorganization. Circulation Research. 106 (6), 1103-1116 (2010).
  26. Goncalves-Rodrigues, P., Miranda-Silva, D., Leite-Moreira, A. F., Falcao-Pires, I. Studying left ventricular reverse remodeling by aortic debanding in rodents. Journal of Visualized Experiments. (173), e60036 (2021).
  27. Miranda-Silva, D., et al. Characterization of biventricular alterations in myocardial (reverse) remodelling in aortic banding-induced chronic pressure overload. Scientific Reports. 9, 2956 (2019).
  28. Chou, S. H., et al. The effects of debanding on the lung expression of ET-1, eNOS, and cGMP in rats with left ventricular pressure overload. Experimental Biology and Medicine. 231 (6), 954-959 (2006).
  29. Hentschel, T., et al. Inhalation of the phosphodiesterase-3 inhibitor milrinone attenuates pulmonary hypertension in a rat model of congestive heart failure. Anesthesiology. 106 (1), 124-131 (2007).
  30. Gs, A. K., Raj, B., Santhosh, K. S., Sanjay, G., Kartha, C. C. Ascending aortic constriction in rats for creation of pressure overload cardiac hypertrophy model. Journal of Visualized Experiments. (88), e50983 (2014).
  31. Angermann, C. E., Ertl, G. Natriuretic peptides–new diagnostic markers in heart disease. Herz. 29 (6), 609-617 (2004).
  32. Ordodi, V. L., Paunescu, V., Mic, F. A. Optimal access to the rat heart by transverse bilateral thoracotomy with double ligature of the internal thoracic arteries. American Association for Laboratory Animal Science. 47 (5), 44-46 (2008).
  33. Fay, D. S., Gerow, K. A biologist’s guide to statistical thinking and analysis. WormBook. , 1-54 (2013).
  34. Etz, C. D., et al. Medically refractory pulmonary hypertension: treatment with nonpulsatile left ventricular assist devices. The Annals of Thoracic Surgery. 83 (5), 1697-1705 (2007).
  35. Mikus, E., et al. Reversibility of fixed pulmonary hypertension in left ventricular assist device support recipients. European Journal of Cardio-Thoracic Surgery. 40 (4), 971-977 (2011).
  36. Zelt, J. G. E., Chaudhary, K. R., Cadete, V. J., Mielniczuk, L. M., Stewart, D. J. Medical therapy for heart failure associated with pulmonary hypertension. Circulation Research. 124 (11), 1551-1567 (2019).
check_url/cn/63502?article_type=t

Play Video

Cite This Article
Sang, P., Kucherenko, M. M., Yao, J., Li, Q., Simmons, S., Kuebler, W. M., Knosalla, C. A Model of Reverse Vascular Remodeling in Pulmonary Hypertension Due to Left Heart Disease by Aortic Debanding in Rats. J. Vis. Exp. (181), e63502, doi:10.3791/63502 (2022).

View Video