Summary

Phage-Mediated Genetic Manipulation of the Lyme Disease Spirochete Borrelia burgdorferi

Published: September 28, 2022
doi:

Summary

The ability of bacteriophage to move DNA between bacterial cells makes them effective tools for the genetic manipulation of their bacterial hosts. Presented here is a methodology for inducing, recovering, and using φBB-1, a bacteriophage of Borrelia burgdorferi, to transduce heterologous DNA between different strains of the Lyme disease spirochete.

Abstract

Introducing foreign DNA into the spirochete Borrelia burgdorferi has been almost exclusively accomplished by transformation using electroporation. This process has notably lower efficiencies in the Lyme disease spirochete relative to other, better-characterized Gram-negative bacteria. The rate of success of transformation is highly dependent upon having concentrated amounts of high-quality DNA from specific backgrounds and is subject to significant strain-to-strain variability. Alternative means for introducing foreign DNA (i.e., shuttle vectors, fluorescent reporters, and antibiotic-resistance markers) into B. burgdorferi could be an important addition to the armamentarium of useful tools for the genetic manipulation of the Lyme disease spirochete. Bacteriophage have been well-recognized as natural mechanisms for the movement of DNA among bacteria in a process called transduction. In this study, a method has been developed for using the ubiquitous borrelial phage φBB-1 to transduce DNA between B. burgdorferi cells of both the same and different genetic backgrounds. The transduced DNA includes both borrelial DNA and heterologous DNA in the form of small shuttle vectors. This demonstration suggests a potential use of phage-mediated transduction as a complement to electroporation for the genetic manipulation of the Lyme disease spirochete. This report describes methods for the induction and purification of phage φBB-1 from B. burgdorferi, the use of this phage in transduction assays, and the selection and screening of potential transductants.

Introduction

The development of tools for the genetic manipulation of the spirochetal bacterium Borrelia burgdorferi has added immeasurable value to the understanding of the nature of Lyme disease1,2,3,4. B. burgdorferi has an unusually complex genome comprised of a small linear chromosome and both linear and circular plasmids5,6. Spontaneous plasmid loss, intragenic rearrangement (movement of genes from one plasmid to another within the same organism), and horizontal gene transfer (HGT, the movement of DNA between two organisms) have given rise to a dizzying amount of genetic heterogeneity among B. burgdorferi (for an example, see Schutzer et al.7). The resulting genotypes (or "strains") are all members of the same species but have genetic differences that influence their ability to transmit to and infect different mammalian hosts8,9,10,11. In this report, the term "strain" will be used to refer to B. burgdorferi with a particular naturally derived genetic background; the term "clone" will be used to refer to a strain that has been genetically modified for a particular purpose or as a result of experimental manipulation.

The molecular toolbox available for use in B. burgdorferi includes selectable markers, gene reporters, shuttle vectors, transposon mutagenesis, inducible promoters, and counter-selectable markers (for a review, see Drektrah and Samuels12). The effective use of these methodologies requires the artificial introduction of heterologous (foreign) DNA into a B. burgdorferi strain of interest. In B. burgdorferi, the introduction of heterologous DNA is achieved almost exclusively via electroporation, a method that utilizes a pulse of electricity to make a bacterial membrane transiently permeable to small pieces of DNA introduced into the media1. The majority of the cells (estimated to be ≥99.5%) are killed by the pulse, but the remaining cells have a high frequency of retaining the heterologous DNA13. Although considered to be among the most highly efficient methods of introducing DNA into bacteria, the frequency of electroporation into B. burgdorferi is very low (ranging from 1 transformant in 5 × 104 to 5 × 106 cells)13. The barriers to achieving higher frequencies of transformation seem to be both technical and biological. Technical barriers to the successful electroporation of B. burgdorferi include both the amount of DNA (>10 μg) that is necessary and the requirement of the spirochetes to be in exactly the correct growth phase (mid-log, between 2 × 107 cells·mL−1 and 7 × 107 cells·mL−1) when preparing electrocompetent cells12,13. These technical barriers, however, may be easier to overcome than the biological barriers.

Lyme disease researchers recognize that B. burgdorferi clones can be divided into two broad categories with respect to their ability to be manipulated genetically13,14. High passage, lab-adapted isolates are often readily transformed but usually have lost the plasmids essential for infectivity, behave in a physiologically aberrant fashion, and are not able to infect a mammalian host or persist within a tick vector12,13. While these clones have been useful for dissecting the molecular biology of the spirochete within the lab, they are of little value for studying the spirochete within the biological context of the enzootic cycle. Low-passage infectious isolates, on the other hand, behave in a physiologic manner reflective of an infectious state and can complete the infectious cycle but usually are recalcitrant to the introduction of heterologous DNA and are, therefore, difficult to manipulate for study12,13. The difficulty in transforming low-passage isolates is related to at least two different factors: (i) low-passage isolates often tightly clump together, particularly under the high-density conditions required for electroporation, thus blocking many cells from either the full application of the electrical charge or access to the DNA in the media13,15; and (ii) B. burgdorferi encodes at least two different plasmid-borne restriction-modification (R-M) systems that may be lost in high-passage isolates14,16. R-M systems have evolved to allow bacteria to recognize and eliminate foreign DNA17. Indeed, several studies in B. burgdorferi have demonstrated that transformation efficiencies increase when the source of the DNA is B. burgdorferi rather than Escherichia coli13,16. Unfortunately, acquiring the requisite high concentration of DNA for electroporation from B. burgdorferi is an expensive and time-consuming prospect. Another potential concern when electroporating and selecting low-passage isolates is that the process seems to favor transformants that have lost the critical virulence-associated plasmid, lp2514,18,19; thus, the very act of genetically manipulating low-passage B. burgdorferi isolates via electroporation may select for clones that are not suitable for biologically relevant analysis within the enzootic cycle20. Given these issues, a system in which heterologous DNA could be electrotransformed into high-passage B. burgdorferi clones and then transferred into low-passage infectious isolates by a method other than electroporation could be a welcome addition to the growing collection of molecular tools available for use in the Lyme disease spirochete.

In addition to transformation (the uptake of naked DNA), there are two other mechanisms by which bacteria regularly take up heterologous DNA: conjugation, which is the exchange of DNA between bacteria in direct physical contact with each other, and transduction, which is the exchange of DNA mediated by a bacteriophage21. Indeed, the ability of bacteriophage to mediate HGT has been used as an experimental tool for dissecting the molecular processes within a number of bacterial systems22,23,24. B. burgdorferi is not naturally competent for the uptake of naked DNA, and there is little evidence that B. burgdorferi encodes the apparatus necessary to promote successful conjugation. Previous reports have described, however, the identification and preliminary characterization of φBB-1, a temperate bacteriophage of B. burgdorferi25,26,27,28. φBB-1 packages a family of 30 kb plasmids found within B. burgdorferi25; the members of this family have been designated cp32s. Consistent with a role for φBB-1 in participating in HGT among B. burgdorferi strains, Stevenson et al. reported an identical cp32 found in two strains with otherwise disparate cp32s, suggesting a recent sharing of this cp32 between these two strains, likely via transduction29. There also is evidence of significant recombination via HGT among the cp32s in an otherwise relatively stable genome30,31,32,33. Finally, the ability of φBB-1 to transduce both cp32s and heterologous shuttle vector DNA between cells of the same strain and between cells of two different strains has been demonstrated previously27,28. Given these findings, φBB-1 has been proposed as another tool to be developed for the dissection of the molecular biology of B. burgdorferi.

The goal of this report is to detail a method for inducing and purifying phage φBB-1 from B. burgdorferi, as well as provide a protocol for performing a transduction assay between B. burgdorferi clones and selecting and screening potential transductants.

Protocol

All experiments using recombinant DNA and BSL-2 organisms were reviewed and approved by the Quinnipiac University Institutional Biosafety Committee. 1. Preparation of B. burgdorferi culture for the production of φBB-1 Prepare Barbour-Stoenner-Kelly medium supplemented with 6.6% heat-inactivated normal rabbit serum (BSK)15. For 1 L of 1x BSK, combine the components listed in Table 1 in 900 mL of water, adjust th…

Representative Results

The use of bacteriophage to move DNA between more readily transformable B. burgdorferi strains or clones that are recalcitrant to electrotransformation represents another tool for the continued molecular investigation of the determinants of Lyme disease. The transduction assay described herein can be modified as needed to facilitate the movement of DNA between any clones of interest using either one or two antibiotics for the selection of potential transductants. The transduction of both prophage DNA and heterol…

Discussion

The use of transduction could represent one method of overcoming at least some of the biological and technical barriers associated with the electrotransformation of B. burgdorferi1,4,13,37. In many systems, bacteriophage can move host (non-prophage) DNA between bacterial cells by either generalized or specialized transduction22,23</s…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The author wishes to thank Shawna Reed, D. Scott Samuels, and Patrick Secor for their useful discussion and Vareeon (Pam) Chonweerawong for their technical assistance. This work was supported by the Department of Biomedical Sciences and faculty research grants to Christian H. Eggers from the School of Health Sciences at Quinnipiac University.

Materials

1 L filter units (PES, 0.22 µm pore size) Millipore Sigma S2GPU10RE
12 mm x 75 mm tube (dual position cap) (polypropylene) USA Scientific 1450-0810 holds 4 mL with low void volume (for induction)
15 mL conical centrifuge tubes (polypropylene) USA Scientific 5618-8271
1-methyl-3-nitroso-nitroguanidine (MNNG) Millipore Sigma CAUTION: potential carcinogen; no longer readily available, have not tested offered substitute
5.75" Pasteur Pipettes (cotton-plugged/borosilicate glass/non-sterile) Thermo Fisher Scientific 13-678-8A autoclave prior to use
50 mL conical centrifuge tubes (polypropylene) USA Scientific 1500-1211
Absolute ethanol
Agarose LE Dot Scientific inc. AGLE-500
Bacto Neopeptone Gibco DF0119-17-9
Bacto TC Yeastolate Gibco 255772
Bovine serum albumin (serum replacement grade) Gemini Bio-Products 700-104P
Chloroform (for molecular biology) Thermo Fisher Scientific BP1145-1 CAUTION: volatile organic; use only in a chemical fume hood
CMRL-1066 w/o L-Glutamine (powder) US Biological C5900-01 cell culture grade
Erythromycin Research Products International Corp E57000-25.0
Gentamicin reagent solution Gibco 15750-060
Glucose (Dextrose Anhydrous) Thermo Fisher Scientific BP350-500
HEPES Thermo Fisher Scientific BP310-500
Kanamycin sulfate Thermo Fisher Scientific 25389-94-0
Millex-GS (0.22 µM pore size) Millipore Sigma SLGSM33SS to filter sterilize antibiotics and other small volume solutions
Mitomycin C Thermo Fisher Scientific BP25312 CAUTION: potential carcinogen; use only in a chemical fume hood
N-acetyl-D-glucosamine MP Biomedicals, LLC 100068
Oligonucleotides (primers for PCR) IDT DNA
OmniPrep (total genomic extraction kit) G Biosciences 786-136
Petri Dish (100 mm × 15 mm) Thermo Fisher Scientific FB0875712
Petroff-Hausser counting chamber Hausser scientific HS-3900
Petroff-Hausser counting chamber cover glass Hausser scientific HS-5051
Polyethylene glycol 8000 (PEG) Thermo Fisher Scientific BP233-1
Rabbit serum non-sterile trace-hemolyzed young (NRS) Pel-Freez Biologicals 31119-3 heat inactivate as per manufacturer's instructions
Semi-micro UV transparent cuvettes USA Scientific 9750-9150
Sodium bicarbonate Thermo Fisher Scientific BP328-500
Sodium chloride Thermo Fisher Scientific BP358-1
Sodium pyruvate Millipore Sigma P8674-25G
Spectronic Genesys 5 Thermo Fisher Scientific
Streptomycin sulfate solution Millipore Sigma S6501-50G
Trisodium citrate dihydrate Millipore Sigma S1804-500G sodium citrate for BSK

References

  1. Samuels, D. S., Drecktrah, D., Hall, L. S. Genetic transformation and complementation. Methods in Molecular Biology. 1690, 183-200 (2018).
  2. Winslow, C., Coburn, J. Recent discoveries and advancements in research on the Lyme disease spirochete Borrelia burgdorferi. F1000Research. 8, (2019).
  3. Coburn, J., et al. Lyme disease pathogenesis. Current Issues in Molecular Biology. 42, 473-518 (2021).
  4. Rosa, P. A., Jewett, M. W. Genetic manipulation of Borrelia. Current Issues in Molecular Biology. 42, 307-332 (2021).
  5. Fraser, C. M., et al. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature. 390 (6660), 580-586 (1997).
  6. Casjens, S., et al. A bacterial genome in flux: The twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Molecular Microbiology. 35 (3), 490-516 (2000).
  7. Schutzer, S. E., et al. Whole-genome sequences of thirteen isolates of Borrelia burgdorferi. Journal of Bacteriology. 193 (4), 1018-1020 (2011).
  8. Ohnishi, J., Piesman, J., de Silva, A. M. Antigenic and genetic heterogeneity of Borrelia burgdorferi populations transmitted by ticks. Proceedings of the National Academy of Sciences of the United States of America. 98 (2), 670-675 (2001).
  9. Dykhuizen, D. E., et al. The propensity of different Borrelia burgdorferi sensu stricto genotypes to cause disseminated infections in humans. American Journal of Tropical Medicine and Hygiene. 78 (5), 806-810 (2008).
  10. Hanincova, K., et al. Multilocus sequence typing of Borrelia burgdorferi suggests existence of lineages with differential pathogenic properties in humans. PLoS One. 8 (9), 73066 (2013).
  11. Kern, A., et al. Heterogeneity of Borrelia burgdorferi sensu stricto population and its involvement in Borrelia pathogenicity: Study on murine model with specific emphasis on the skin interface. PLoS One. 10 (7), 0133195 (2015).
  12. Drecktrah, D., Samuels, D. S. Genetic manipulation of Borrelia spp. Current Topics in Microbiology and Immunology. 415, 113-140 (2017).
  13. Tilly, K., Elias, A. F., Bono, J. L., Stewart, P., Rosa, P. DNA exchange and insertional inactivation in spirochetes. Journal of Molecular Microbiology and Biotechnology. 2 (4), 433-442 (2000).
  14. Lawrenz, M. B., Kawabata, H., Purser, J. E., Norris, S. J. Decreased electroporation efficiency in Borrelia burgdorferi containing linear plasmids lp25 and lp56: Impact on transformation of infectious B. burgdorferi. Infection and Immunity. 70 (9), 4798-4804 (2002).
  15. Samuels, D. S. Electrotransformation of the spirochete Borrelia burgdorferi. Methods in Molecular Biology. 47, 253-259 (1995).
  16. Rego, R. O., Bestor, A., Rosa, P. A. Defining the plasmid-borne restriction-modification systems of the Lyme disease spirochete Borrelia burgdorferi. Journal of Bacteriology. 193 (5), 1161-1171 (2011).
  17. Makarova, K. S., Wolf, Y. I., Koonin, E. V. Comparative genomics of defense systems in archaea and bacteria. Nucleic Acids Research. 41 (8), 4360-4377 (2013).
  18. Grimm, D., Elias, A. F., Tilly, K., Rosa, P. A. Plasmid stability during in vitro propagation of Borrelia burgdorferi assessed at a clonal level. Infection and Immunity. 71 (6), 3138-3145 (2003).
  19. Grimm, D., et al. Experimental assessment of the roles of linear plasmids lp25 and lp28-1 of Borrelia burgdorferi throughout the infectious cycle. Infection and Immunity. 72 (10), 5938-5946 (2004).
  20. Heery, D. M., Powell, R., Gannon, F., Dunican, L. K. Curing of a plasmid from E. coli using high-voltage electroporation. Nucleic Acids Research. 17 (23), 10131 (1989).
  21. Ochman, H., Lawrence, J. G., Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature. 405 (6784), 299-304 (2000).
  22. Morsczeck, C. Strategies for mycobacterial genetics. International Journal of Medical Microbiology. 293 (4), 251-259 (2003).
  23. Thomason, L. C., Costantino, N., Court, D. L. E. coli genome manipulation by P1 transduction. Current Protocols in Molecular Biology. , 1-8 (2007).
  24. Keller, C. M., Kendra, C. G., Bruna, R. E., Craft, D., Pontes, M. H. Genetic modification of Sodalis species by DNA transduction. mSphere. 6 (1), e01331 (2021).
  25. Eggers, C. H., Samuels, D. S. Molecular evidence for a new bacteriophage of Borrelia burgdorferi. Journal of Bacteriology. 181 (23), 7308-7313 (1999).
  26. Eggers, C. H., et al. Bacteriophages of spirochetes. Journal of Molecular Microbiology and Biotechnology. 2 (4), 365-373 (2000).
  27. Eggers, C. H., et al. Transduction by φBB-1, a bacteriophage of Borrelia burgdorferi. Journal of Bacteriology. 183 (16), 4771-4778 (2001).
  28. Eggers, C. H., et al. Phage-mediated horizontal gene transfer of both prophage and heterologous DNA by φBB-1, a bacteriophage of Borrelia burgdorferi. Pathogens and Disease. 74 (9), (2016).
  29. Stevenson, B., Miller, J. C. Intra- and interbacterial genetic exchange of Lyme disease spirochete erp genes generates sequence identity amidst diversity. Journal of Molecular Evolution. 57 (3), 309-324 (2003).
  30. Dykhuizen, D. E., Baranton, G. The implications of a low rate of horizontal transfer in Borrelia. Trends in Microbiology. 9 (7), 344-350 (2001).
  31. Brisson, D., Drecktrah, D., Eggers, C. H., Samuels, D. S. Genetics of Borrelia burgdorferi.. Annual Reviews in Genetics. 46, 515-536 (2012).
  32. Brisson, D., Zhou, W., Jutras, B. L., Casjens, S., Stevenson, B. Distribution of cp32 prophages among Lyme disease-causing spirochetes and natural diversity of their lipoprotein-encoding erp loci. Applied and Environmental Microbiology. 79 (13), 4115-4128 (2013).
  33. Schwartz, I., Margos, G., Casjens, S. R., Qiu, W. G., Eggers, C. H. Multipartite genome of Lyme disease Borrelia: Structure, variation and prophages. Current Issues in Molecular Biology. 42, 409-454 (2021).
  34. Centers for Disease Control and Prevention. . Biosafety in Microbiological and Biomedical Laboratories,. 6th edition. , (2020).
  35. Yang, X. F., Pal, U., Alani, S. M., Fikrig, E., Norgard, M. V. Essential role for OspA/B in the life cycle of the Lyme disease spirochete. Journal of Experimental Medicine. 199 (5), 641-648 (2004).
  36. Lee, S. K., Yousef, A. E., Marth, E. H. Thermal inactivation of Borrelia burgdorferi, the cause of Lyme disease. Journal of Food Protection. 53 (4), 296-299 (1990).
  37. Seshu, J., Moy, B. E., Ingle, T. M. Transformation of Borrelia burgdorferi. Current Protocols. 1 (3), 61 (2021).
  38. Purser, J. E., Norris, S. J. Correlation between plasmid content and infectivity in Borrelia burgdorferi. Proceedings of the National Academy of Sciences of the United States of America. 97 (25), 13865-13870 (2000).
  39. Labandeira-Rey, M., Seshu, J., Skare, J. T. The absence of linear plasmid 25 or 28-1 of Borrelia burgdorferi dramatically alters the kinetics of experimental infection via distinct mechanisms. Infection and Immunity. 71 (8), 4608-4613 (2003).
  40. Ruzic-Sabljic, E., et al. Comparison of MKP and BSK-H media for the cultivation and isolation of Borrelia burgdorferi sensu lato. PLoS One. 12 (2), 0171622 (2017).
  41. Wang, G., et al. Variations in Barbour-Stoenner-Kelly culture medium modulate infectivity and pathogenicity of Borrelia burgdorferi clinical isolates. Infection and Immunity. 72 (11), 6702-6706 (2004).
  42. Bono, J. L., et al. Efficient targeted mutagenesis in Borrelia burgdorferi. Journal of Bacteriology. 182 (9), 2445-2452 (2000).
  43. Elias, A. F., et al. New antibiotic resistance cassettes suitable for genetic studies in Borrelia burgdorferi. Journal of Molecular Microbiology and Biotechnology. 6 (1), 29-40 (2003).
  44. Frank, K. L., Bundle, S. F., Kresge, M. E., Eggers, C. H., Samuels, D. S. aadA confers streptomycin resistance in Borrelia burgdorferi. Journal of Bacteriology. 185 (22), 6723-6727 (2003).
  45. Sartakova, M. L., et al. Novel antibiotic-resistance markers in pGK12-derived vectors for Borrelia burgdorferi. Gene. 303 (1-2), 131-137 (2003).
  46. Wormser, G. P., et al. The clinical assessment, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: Clinical practice guidelines by the Infectious Diseases Society of America. Clinical Infectious Diseases. 43 (9), 1089-1134 (2006).
  47. Terekhova, D., Sartakova, M. L., Wormser, G. P., Schwartz, I., Cabello, F. C. Erythromycin resistance in Borrelia burgdorferi. Antimicrobial Agents and Chemotherapy. 46 (11), 3637-3640 (2002).
  48. Sorbye, H., Kvinnsland, S., Svanes, K. Penetration of N-methyl-N’-nitro-N-nitrosoguanidine to proliferative cells in gastric mucosa of rats is different in pylorus and fundus and depends on exposure time and solvent. Carcinogenesis. 14 (5), 887-892 (1993).
  49. Muniesa, M., Imamovic, L., Jofre, J. Bacteriophages and genetic mobilization in sewage and faecally polluted environments. Microbial Biotechnology. 4 (6), 725-734 (2011).
  50. Penades, J. R., Chen, J., Quiles-Puchalt, N., Carpena, N., Novick, R. P. Bacteriophage-mediated spread of bacterial virulence genes. Current Opinion in Microbiology. 23, 171-178 (2015).
  51. Thierauf, A., Perez, G., Maloy, A. S. Generalized transduction. Methods in Molecular Biology. 501, 267-286 (2009).
  52. Casjens, S. R., et al. Plasmid diversity and phylogenetic consistency in the Lyme disease agent Borrelia burgdorferi. BMC Genomics. 18 (1), 165 (2017).
  53. Ojaimi, C., et al. Borrelia burgdorferi gene expression profiling with membrane-based arrays. Methods in Enzymology. 358, 165-177 (2002).
  54. Stevenson, B., et al. The relapsing fever spirochete Borrelia hermsii contains multiple, antigen-encoding circular plasmids that are homologous to the cp32 plasmids of Lyme disease spirochetes. Infection and Immunity. 68 (7), 3900-3908 (2000).
  55. Kingry, L. C., et al. Whole genome sequence and comparative genomics of the novel Lyme borreliosis causing pathogen, Borrelia mayonii. PLoS One. 11 (12), 0168994 (2016).
  56. Kuleshov, K. V., et al. Whole genome sequencing of Borrelia miyamotoi isolate Izh-4: Reference for a complex bacterial genome. BMC Genomics. 21 (1), 16 (2020).
  57. Dong, D., Sutaria, S., Hwangbo, J. Y., Chen, P. A simple and rapid method to isolate purer M13 phage by isoelectric precipitation. Applied Microbiology and Biotechnology. 97 (18), 8023-8029 (2013).
  58. Kleiner, M., Hooper, L. V., Duerkop, B. A. Evaluation of methods to purify virus-like particles for metagenomic sequencing of intestinal viromes. BMC Genomics. 16, 7 (2015).
  59. Patterson, T. A., Dean, M. Preparation of high titer lambda phage lysates. Nucleic Acids Research. 15 (15), 6298 (1987).
  60. Ackermann, H. W., et al. Guidelines for bacteriophage characterization. Advances in Virus Research. 23, 1-24 (1978).
  61. Anderson, B., et al. Enumeration of bacteriophage particles: Comparative analysis of the traditional plaque assay and real-time QPCR- and nanosight-based assays. Bacteriophage. 1 (2), 86-93 (2011).
  62. Eggers, C. H., Casjens, S., Samuels, D. S., Saier, M. H., Garcia-Lara, J. Bacteriophages of Borrelia burgdorferi and Other Spirochetes. The Spirochetes: Molecular and Cellular Biology. , 35-44 (2001).
  63. Birge, E. A. . Bacterial and Bacteriophage Genetics,. 5th edition. , (2010).
  64. Eggers, C. H., et al. Identification of loci critical for replication and compatibility of a Borrelia burgdorferi cp32 plasmid and use of a cp32-based shuttle vector for the expression of fluorescent reporters in the Lyme disease spirochaete. Molecular Microbiology. 43 (2), 281-295 (2002).
check_url/cn/64408?article_type=t

Play Video

Cite This Article
Eggers, C. H. Phage-Mediated Genetic Manipulation of the Lyme Disease Spirochete Borrelia burgdorferi. J. Vis. Exp. (187), e64408, doi:10.3791/64408 (2022).

View Video