Summary

茶叶样品中吡咯里西啶类生物碱污染的来源及途径

Published: September 28, 2022
doi:

Summary

本协议描述了茶园中产生PA的杂草的茶样中吡咯里西啶生物碱(PA)的污染。

Abstract

在茶叶样品中发现了有毒的吡咯里西啶生物碱(PAs),对人体健康构成威胁。然而,茶叶样品中PA污染的来源和途径尚不清楚。本研究采用吸附剂方法结合UPLC-MS/MS测定了松 根际土壤、圆 锥孢子草 根际土壤、新鲜茶叶和干茶样品中的15个PA。平均回收率为78%-111%,相对标准差为0.33%-14.8%。以安徽省金寨茶园为研究对象,采集了15对圆 锥苣 苔和 圆锥苣苔 根际土壤样品和60个鲜茶叶样品,并对15个茶叶进行了分析。并非所有15种PA都在新鲜茶叶中检测到,除了中间体-N-氧化物(ImNO)和Senecionine(Sn)。ImNO(34.7 μg/kg)的含量大于Sn(9.69 μg/kg)。此外,ImNO和Sn均集中在茶树的嫩叶中,而在老叶中含量较低。结果表明:茶叶中的PAs通过茶园产PA杂草-土壤-鲜茶叶的路径转移。

Introduction

作为次级代谢物,吡咯里西啶生物碱 (PA) 保护植物免受食草动物、昆虫和病原体的侵害12.到目前为止,已在全球6,000多种植物物种中发现了660多种具有不同结构的PA和PA-N-氧化物(PANO)34。产PA的植物主要分布在 菊科苜蓿科、 科和 顶生科56中。PAs易氧化成不稳定的脱氢吡咯里西啶生物碱,具有较强的亲电性,可攻击DNA和蛋白质等亲核试剂,导致肝细胞坏死、静脉闭塞、肝硬化、腹水等症状78。PA毒性的主要靶器官是肝脏。PA还可引起肺、肾和其他器官毒性以及致突变、致癌和发育毒性910

许多国家报告了人类和动物中毒的病例,原因是摄入含有PAs的传统草药、补充剂或茶,或间接污染牛奶、蜂蜜或肉类等食物(摄入含有PAs的牧场有毒)111213。欧洲食品安全局(EFSA)的调查结果显示,(草药)茶等物质是人类接触PAs/PANOs的重要来源14。茶样不产生PA,而产生PA的植物常见于茶园(例如,Emilia sonchifoliaSenecio angulatusAgeratum conyzoides15。以前怀疑茶叶可能在采摘和加工过程中被其生产植物的PA污染。然而,在一些手工采摘的茶叶中也检测到PAs(即没有产生PA的植物),这表明一定有其他途径或污染源16。对豚草(Senecio jacobaea)与Melissa(Melissa officinalis),薄荷(薄荷(薄),欧芹(Petrroselinum crispum),洋甘菊(Matricaria recutita)和金莲花(Tropaeolum majus)植物进行了共栽培实验,结果表明,在所有这些植物中都检测到PAs17。已经证实,PA确实通过土壤在活植物之间转移和交换1819。Van Wyk等人20发现路易波士茶(Aspalathus linearis)在杂草丰富的地点受到严重污染,并且含有相同类型和比例的PA。然而,在无杂草地点的路易波士茶中没有检测到PA。

目前,具有高选择性和灵敏度的超高效液相色谱串联质谱(UPLC-MS/MS)已广泛应用于农产品和食品中PAs的定性和定量分析2122。样品处理方法通常包括固相萃取(SPE)或QuEChERS(快速简便廉价坚固安全)对复杂食品基质提取物的净化,可以获得尽可能高的灵敏度1219。然而,仍然缺少能够检测和定量土壤、杂草和新鲜茶叶等复杂基质中的PA的稳健分析方法。

本研究采用UPLC-MS/MS结合吸附纯化方法分析了干茶样品、鲜茶叶、杂草和杂草根际土壤样品中的15种PA。此外,从安徽省金寨茶园的5个采样点采集了15个配对杂草和杂草根际土壤样品和60个新鲜茶叶样品,并对15个PA进行了分析。这些结果可以提供茶样中PAs(污染)来源和途径的调查方法和一些信息,以确保茶叶的质量和安全。

Protocol

在本研究中,收集了以下杂草种类:路德维希亚匍匐罗克斯布,穆尔达尼亚特里克特拉(沃尔前C.B.克拉克)布鲁克,圆锥藜,藜藜,茉莉花气管(L.)莱姆,圆锥苣苔,艾米利亚松子(L.DC),圆锥苣苔L.和裂头螨 (本。S·摩尔。新鲜茶叶采摘自龙井43#茶树品种,干茶样品为市售茶叶,按绿茶制造工艺加工而成(见材料表</…

Representative Results

建立了对干茶样品、鲜茶叶、杂草和土壤中15种PA的优化吸附纯化分析方法,并与常用的SPE滤芯纯化方法进行了比较。结果表明,使用SPE滤芯的干茶样品、杂草和鲜茶叶中15个PA的回收率为72%-120%,而使用吸附剂纯化为78%-98%(图1)。使用吸附剂纯化对土壤中15种PA的回收率为79%-111%(图1)。随机收集四十(40)个真实样品以检测PA的含量,以比较两种净化?…

Discussion

本工作旨在开发一种有效、灵敏的方法来探索茶叶样品中PA的污染途径和来源,以及PAs在茶树不同部位的分布。然而,在这项研究中,色谱柱上仅成功分离了15个PA,与植物物种34中的大量生物碱相比这是一个非常小的数字。这不仅与色谱柱本身的堆积特性有关,还与所检查茶样品的复杂基质有关。因此,更好的分离纯化方法检测多PA仍需进一步探索?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

这项工作得到了中国国家自然科学基金(32102244),国家农产品质量安全与风险评估项目(GJFP2021001),安徽省自然科学基金(19252002)和美国农业部(HAW05020H)的支持。

Materials

Acetonitrile (99.9%) Tedia Company,Inc. 21115197 CAS No:75-05-8
Ammonia (25%-28%) Wuxi Zhanwang Chemical Reagent Co., Ltd. 181210 CAS No:1336-21-6
Ammonium formate (97.0%) Anpel Laboratory Technoiogies (shanghai) G0860050 CAS No:540-69-2
Carbon-GCB CNW B7760030 120-400 MESH, 10g. per box 
Centrifuge Z 36 HK HERMLE Z36HK 30000 rpm (min:10 rpm), Dimensions (W x H x D): 71.5 cm× 42 cm × 51 cm
Commercially available tea product Lvming, Qingshan, Luyuchun, Changling, Huixing, Wuyunjian, Heshengchun loose tea Green tea
Europine N-oxid (EuNO) (98.0%) BioCrick 323256 CAS No:65582-53-8
Europine (Eu) (98.0%) BioCrick 98222 CAS No:570-19-4
Formate (98.0%) Aladdin E2022005 CAS No:64-18-6
HC-C18 CNW D2110060 40-63 μm,100g.per box
Heliotrine (He) (98.0%) BioCrick 906426 CAS No:303-33-3
Heliotrine-N-oxide (HeNO) (98.0%) BioCrick 22581 CAS No:6209-65-0
High speed centrifuge TG16-WS cence 203158000 Max:16000 r/min, 330 × 390 × 300 mm (L × W × H), Capacity: 6 × 50 mL
HSS T3 column Waters 186004976 ACQUITY UPLC HSS T3 (2.1 × 100 mm 1.8 μm)
Intermedine (Im) (98.0%) BioCrick 114843 CAS No:10285-06-0
Intermedine-N-oxide (ImNO) (98.0%) BioCrick 340066 CAS No:95462-14-9
Jacobine (Jb) (98.0%) BioCrick 132282048 CAS No:6870-67-3
Jacobine-N-oxide (JbNO) (98.0%) ChemFaces CFN00461 CAS No:38710-25-7
Methyl Alcohol (99.9%) Tedia Company,Inc. 21115100 CAS No:67-56-1
PSA Agela P19-00833 40-60 μm, 60 Å 100g.per box
Retrorsine (Re) (98.0%) BioCrick 5281743 CAS No:480-54-6
Retrorsine-N-oxide (ReNO) (98.0%) BioCrick 5281734 CAS No:15503-86-3
Senecionine (Sc) (98.0%) BioCrick 5280906 CAS No:130-01-8
Senecionine-N-oxide (ScNO) (98.0%) BioCrick 5380876 CAS No:13268-67-2
Seneciphylline N-oxid (SpNO) (98.0%) BioCrick 6442619 CAS No:38710-26-8
Seneciphylline (Sp) (98.0%) BioCrick 5281750 CAS No:480-81-9
Senkirkine (Sk) (98.0%) BioCrick 5281752 CAS No:2318-18-5
SPE PCX Agilent Technologies 12108206 Cation Mixed Mode, 6 mL
Sulfuric acid (97%) Wuxi Zhanwang Chemical Reagent Co., Ltd. 1003019 CAS No:7664-93-9
Trisodium citrate Sinpharm Chemical Reagent Co., Ltd. 20121009 CAS No:6132-04-3
Ultrasonic cleaner Supmile KQ-600B Inner slot size: 500 × 300 × 150 mm; Capacity: 22.5 L
UPLC-xevoTQMS Waters ZPLYY-003 Triple four-stage rod mass analyzer, Waters Alliance 2695/Waters ACQUITY UPLC Liquid Phase System
Water bath thermostat oscillator Guoyu instrument SHY-2AHS Oscillation times:  60-300 times/min, Constant temperature range: room temperature to 100 °C

Referenzen

  1. Schramm, S., Kohler, N., Rozhon, W. Pyrrolizidine alkaloids: Biosynthesis, biological activities and occurrence in crop plants. Molecules. 24 (3), 498 (2019).
  2. EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on pyrrolizidine alkaloids in food and feed. EFSA Journal. 9 (11), 134 (2011).
  3. Ma, C., et al. Determination and regulation of hepatotoxic pyrrolizidine alkaloids in food: A critical review of recent research. Food and Chemical Toxicology. 119, 50-60 (2018).
  4. Keuth, O., Humpf, H. U., Fürst, P., Melton, L., Shahidi, F., Varelis, P. Pyrrolizidine Alkaloids: Analytical Challenges. Encyclopedia of Food Chemistry. 1, 348-355 (2019).
  5. Huang, D. Y., et al. Pyrrolizidine alkaloids and its source analysis in tea. Journal of Food Safety & Quality. 9 (2), 229-236 (2018).
  6. Liang, A. H., Ye, Z. G. General situation of the toxicity researches on Senecio. China Journal of Chinese Materia Medica. 31 (2), 93-97 (2006).
  7. Li, Y. H., et al. Proteomic study of pyrrolizidine alkaloid-induced hepatic sinusoidal obstruction syndrome in rats. Chemical Research in Toxicology. 28 (9), 1715-1727 (2015).
  8. Jia, Z. J., et al. Catalytic enantioselective synthesis of a pyrrolizidine-alkaloid-inspired compound collection with antiplasmodial activity. The Journal of Organic Chemistry. 83, 7033-7041 (2018).
  9. Yang, M., et al. First evidence of pyrrolizidine alkaloid N-oxide-induced hepatic sinusoidal obstruction syndrome in humans. Archives of Toxicology. 91 (12), 3913-3925 (2017).
  10. Chen, Z., Huo, J. R. Hepatic veno-occlusive disease associated with toxicity of pyrrolizidine alkaloids in herbal preparations. Netherlands Journal of Medicine. 68 (6), 252-260 (2010).
  11. Mattocks, A. R. . Chemistry and Toxicology of Pyrrolizidine Alkaloid. , (1986).
  12. Picron, J. F., Herman, M., Van Hoeck, E., Goscinny, S. Analytical strategies for the determination of pyrrolizidine alkaloids in plant based food and examination of the transfer rate during the infusion process. Food Chemistry. 266, 514-523 (2018).
  13. Kowalczyk, E., Kwiatek, K. Application of the sum parameter method for the determination of pyrrolizidine alkaloids in teas. Food Additives & Contaminants: Part A. 37 (4), 622-633 (2020).
  14. EFSA Panel on Contaminants in the Food Chain (CONTAM). Risks for human health related to the presence of pyrrolizidine alkaloids in honey, tea, herbal infusions and food supplements. EFSA Journal. 15 (7), 04908 (2017).
  15. Han, H., et al. Pyrrolizidine alkaloids in tea: A review of analytical methods, contamination levels and health risk. Food Science. 42 (17), 255-266 (2021).
  16. Nowak, M., et al. Interspecific transfer of pyrrolizidine alkaloids: An unconsidered source of contaminations of phytopharmaceuticals and plant derived commodities. Food Chemistry. 213, 163-168 (2016).
  17. Selmar, D., et al. Transfer of pyrrolizidine alkaloids between living plants: A disregarded source of contaminations. Environmental Pollution. 248, 456-461 (2019).
  18. Izcara, S., et al. Miniaturized and modified QuEChERS method with mesostructured silica as clean-up sorbent for pyrrolizidine alkaloids determination in aromatic herbs. Food Chemistry. 380, 132189 (2022).
  19. Izcara, S., Casado, N., Morante-Zarcero, S., Sierra, I. A miniaturized QuEChERS method combined with ultrahigh liquid chromatography coupled to tandem mass spectrometry for the analysis of pyrrolizidine alkaloids in oregano samples. Foods. 9 (9), 1319 (2020).
  20. Van Wyk, B. E., Stander, M. A., Long, H. S. Senecio angustifolius as the major source of pyrrolizidine alkaloid contamination of rooibos tea (Aspalathus linearis). South African Journal of Botany. 110, 124-131 (2017).
  21. Johnson, A. E., Molyneux, R. J., Merrill, G. B. Chemistry of toxic range plants. Variation in pyrrolizidine alkaloid content of Senecio, Amsinckia, and Crotalaria species. Journal of Agricultural and Food Chemistry. 33 (1), 50-55 (1985).
  22. Vrieling, K., de Vos, H., van Wijk, C. A. M. Genetic analysis of the concentrations of pyrrolizidine alkaloids in Senecio jacobaea. Phytochemistry. 32 (5), 1141-1144 (1993).
  23. Han, H. L., et al. Development, optimization, validation and application of ultra high performance liquid chromatography tandem mass spectrometry for the analysis of pyrrolizidine alkaloids and pyrrolizidine alkaloid N-oxides in teas and weeds. Food control. 132, 108518 (2022).
  24. Bodi, D., et al. Determination of pyrrolizidine alkaloids in tea, herbal drugs and honey. Food Additives & Contaminants: Part A. 31 (11), 1886-1895 (2014).
  25. European Union Commission. Commission Regulation (EU) 2020/2040 of 11 December 2020 amending Regulation (EC) No 1881/2006 as regards maximum levels of pyrrolizidine alkaloids in certain foodstuffs. Official Journal of the European Union. 14 (12), 1-4 (2020).
check_url/de/64375?article_type=t

Play Video

Diesen Artikel zitieren
Jiao, W., Shen, T., Wang, L., Zhu, L., Li, Q. X., Wang, C., Chen, H., Hua, R., Wu, X. Source and Route of Pyrrolizidine Alkaloid Contamination in Tea Samples. J. Vis. Exp. (187), e64375, doi:10.3791/64375 (2022).

View Video