Summary

Assays for the Degradation of Misfolded Proteins in Cells

Published: August 28, 2016
doi:

Summary

This report describes protocols for measuring degradation rates of misfolded proteins by either western blot or fluorescence-based assays. The methods can be applied to analysis of other misfolded proteins and for high throughput screening.

Abstract

Protein misfolding and aggregation are associated with various neurodegenerative diseases. Cellular mechanisms that recognize and degrade misfolded proteins may serve as potential therapeutic targets. To distinguish degradation of misfolding-prone proteins from other mechanisms that regulate their levels, one important method is to measure protein half-life in cells. However, this can be challenging because misfolding-prone proteins may exist in different forms, including the native form and misfolded forms of distinct characteristics. Here we describe assays to examine the half-life of misfolded proteins in mammalian cells using a highly aggregation-prone protein, Ataxin-1 with an extended polyglutamine (polyQ) stretch, and a conformationally unstable luciferase mutant as models. Cycloheximide chase is combined with cell fractionation to examine the turnover rate of misfolding-prone proteins in various cellular fractions. We further depict a fluorescence-based assay using an enhanced green fluorescence protein (EGFP)-fusion of the luciferase mutant, which can be adapted for high throughput screening on a microplate-reader.

Introduction

Proteins are the most abundant macromolecules in cells, and they play an essential role in virtually all biological processes. The biological activity of most proteins requires their folding into, and maintaining, the native three-dimensional structures. Proteins with aberrant conformations not only lose their normal functions, but also frequently form soluble oligomeric species or aggregates that impair the functions of other proteins and are toxic to cells1,2. To counteract protein misfolding, cells employ both molecular chaperones, which assist unfolded or partially folded polypeptides to reach their native conformation, and degradation pathways, which eliminate misfolded proteins3. Given the complexity and stochastic nature of the folding process, protein misfolding is inevitable, and it may not be reversed in the case of mutations, biosynthetic errors, and post-translational damages1. Hence, cells ultimately rely on degradation pathways to maintain their protein quality.

The importance of cellular protein quality control (PQC) systems is underscored by the prevalence of protein-misfolding diseases, including cancer, diabetes, and many neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease (HD), and spinocerebellar ataxias (SCA)4,5. For example, mutations in the tumor suppressor p53 is the single most frequently genetic lesion in tumors, associated with ~50-70% of all cases6. A substantial fraction of p53 mutations are missense mutations that alter the conformation of p53, leading to the formation of aggregates7. Furthermore, proteins with expanded polyQ stretches are genetically and pathologically associated with HD and SCA. These progressive and often fatal diseases manifest when the length of the polyQ stretch in the affected proteins exceeds a certain threshold, and becomes increasingly severe as the length of the polyQ stretch prolongs8.

An attractive approach for treating these diseases is to therapeutically bolster cellular PQC systems, especially the degradation pathways. However, the pathways involved in the degradation of defective proteins, particularly those in mammalian cells, remain poorly understood. Although it has been recognized that the proteasome is critically important for the degradation of misfolded proteins, a vital issue remains undefined: how misfolded proteins are specifically recognized and targeted for degradation. Moreover, although PQC systems have been identified in cellular compartments including the cytoplasm, the endoplasmic reticulum, and the mitochondrion, the PQC systems in the nucleus remain unclear2.

Recent studies by our lab have identified a system that recognizes and degrades a variety of misfolded proteins in the nucleus of mammalian cells9. This system is comprised of the promyelocytic protein (PML), a nuclear protein and a member of the tripartite motif-containing (TRIM) protein family, and RNF4, a RING-domain containing protein. PML, and several other TRIM proteins, possess SUMO (small ubiquitin-like modifier) E3 ligase activity, which facilitates the specificity and efficiency of protein SUMOylation10. RNF4 belongs to a small group of SUMO-targeted ubiquitin ligases (STUbL), which contain one or more sumo-interacting motifs (SIMs) in addition to the RING domain that affords them the ubiquitin ligase activity11. We found that PML specifically recognizes misfolded proteins through discrete substrate recognition sites that can discern distinct features on misfolded proteins. Upon binding, PML tags misfolded proteins with poly-chains of SUMO2/3, two nearly identical mammalian SUMO proteins that can form poly-chains due to the existence of an internal SUMOylation site. SUMOylated misfolded proteins are then recognized by RNF4, which leads to their ubiquitination and proteasomal degradation. We further demonstrated that the PML-RNF4 system is important for protection against neurodegeneration, as deficiency in PML exacerbates the behavioral and neuropathological defects of a mouse model of SCA type 1 (SCA1)9.

To distinguish protein degradation from other cellular mechanisms that may regulate protein levels, the rates of protein turnover was measured9. Among the most frequently used methods to determine protein turnover are pulse chase and cycloheximide (CHX) chase. These two methods examine over time, respectively, the radioisotope-labeled proteins of interest in translation-proficient cells and total preexisting proteins of interest in translation-inhibited cells. However, a major challenge for studying pathogenic and misfolding-prone proteins is that the half-life of these proteins can be extremely long. For example, Ataxin-1, Ataxin-7, Huntingtin, α-synuclein, and TDP-43 all have half-lives of more than 12 to 24 hr9,12-16. The slow turnover rates of these proteins preclude the use of the CHX chase analysis because the cells harboring these proteins may not survive prolonged translation inhibition, especially because the misfolded proteins themselves can be highly toxic to cells. The pulse-chase analysis with isotopic labeling may also be challenging for proteins that are highly aggregation-prone. Most pulse-chase assays rely on immunoprecipitation to separate the protein of interest from all the other proteins that are also radioactively labeled. This procedure normally includes lengthy immunoprecipitation and wash procedures, during which SDS-insoluble aggregates can form, making the analysis with SDS-PAGE electrophoresis inaccurate.

Here a protocol to analyze nuclear misfolded proteins with a slow turnover rate is described9. A pathogenic form of Ataxin-1 (Atxn1) that contains a stretch of 82 glutamines (Atxn1 82Q) is used for this purpose8. When expressed in cells, an enhanced green fluorescent protein (GFP) fusion of Atxn1 82Q forms microscopically visible inclusions in the nucleus (Figure 1A). Pulse chase analysis reveals that the half-life of Ataxn1 82Q is over 18 hr9. Atxn1 82Q is composed of species with misfolded conformations of different characteristics, as well as species with native conformation. It is likely that these species are degraded at different rates, and thus should be analyzed separately. Lysates from Atxn1 82Q-GFP-expressing cells are fractionated into NP-40-soluble (soluble or NS, likely representing native proteins or misfolded monomeric/oligomeric proteins) and NP-40-insoluble (NI, aggregated/misfolded) portions. The latter can be further divided into SDS-soluble (SS; likely disordered aggregates) or SDS-resistant (SR; likely amyloid fibrils) fractions (Figure 1B). NS and SS fractions can be analyzed by SDS-PAGE followed by western blotting, whereas the SR fraction can be detected by filter retardation assays followed by immunoblotting. CHX chase is combined with the detergent fractionation method, and discovered that the half-life of SS Atxn1 82Q is much shorter than that of NS Atxn1 82Q and total Atxn1 82Q (Figure 2A), indicating that the SS fraction can be readily recognized and degraded in cells9. Thus, this method provides a powerful tool to study the dynamics of misfolded proteins and to compare their degradation pattern.

We also describe a method that is suitable for high throughput screening for identifying macromolecules or small compounds that can modulate the degradation of misfolded proteins. This method is based on a conformationally destabilized mutant of firefly luciferase (LucDM)17, a model chaperone substrate. We have fused LucDM to a nuclear localization signal (NLS) to probe the PQC systems in this cellular compartment, and GFP (NLS-LucDM-GFP) for convenience of detection. NLS-LucDM-GFP forms microscopically visible nuclear aggregates in a small percentage of cells (Figure 3A). Similar to Atxn1 82Q, NLS-LucDM-GFP-but not its wild-type counterpart NLS-LucWT-GFP-is modified by SUMO2/3 and regulated by the PML-RNF4 pathway9. NLS-LucDM-GFP also forms SS and SR species, although the relative amounts of SS and SR species are minimal compared to NS, using the conditions described in protocol 3 below. To simplify the assay, we only analyze SDS soluble LucDM (including both the NS and SS fractions) by SDS-PAGE and western blot. Importantly, CHX chase assay showed that the half-life of SDS-soluble NLS-LucDM-GFP is much shorter than that of its wild-type counterpart (Figure 3B), suggesting that LucDM is a specific substrate for the system that recognizes and degrades misfolded proteins.

The degradation of LucDM-GFP causes a significant drop in overall fluorescence signal. Therefore, we have also developed a protocol for real-time detection of cellular LucDM-GFP using microplate fluorescence-based assay. Many high-throughput screen (HTS) systems are developed for drugs or genes modifying cellular aggregates and cellular viability caused by aberrant proteins18-20. However, very few HTSs are specifically designed for targeting degradation in mammalian cells. This protocol serves as a robust system for rapid and large-scale analysis of the effects of protein expression, knockdown, and drug treatment on cellular misfolded protein degradation. Using HeLa cells as example, below we describe the protocols for the analysis of these two misfolded proteins. The assays can also be applied to other cell lines, although transfection conditions and time course may need to be optimized for individual cell lines.

Protocol

1. Preparation of Reagent Prepare cell lysis buffer (50 mM Tris, pH 8.8, 100 mM NaCl, 5 mM MgCl2, 0.5% NP-40). Supplement 2 mM DTT, 1x complete protease cocktail, and 250 IU/ml benzonase before use. Prepare pellet buffer (20 mM Tris, pH 8.0, 15 mM MgCl2). Supplement 2 mM DTT, 1x complete protease cocktail and 250 IU/ml benzonase before use. Prepare 3x boiling buffer (6% SDS, 20 mM Tris, pH 8.0). Supplement 150 mM DTT before use. Prepare low-fluorescence DMEM…

Representative Results

In a steady state analysis, microscopically visible Atxn1 82Q-GFP nuclear aggregates can be observed in 30 – 50% of HeLa cells 20 hr after transfection (Figure 1A). Western blot analysis of NS and SS fractions using anti-GFP antibody shows a distinct band of Atxn1 82Q-GFP between 100 kDa and 150 kDa markers, corresponding to the protein's molecular weight (Figure 1B). Atxn1 82Q-GFP in the SR fraction can be detected either by filter retardation assay,…

Discussion

Mechanisms that regulate the degradation of misfolded proteins are essential for maintaining the homeostasis of cellular proteins, and they likely represent valuable drug targets for treating neurodegenerative disorders and other protein-misfolding diseases. Here, assays that examine the degradation of misfolded proteins are described, using a pathogenic Atxn1 protein (Atxn1 82Q) and a nuclear localized luciferase mutant (NLS-LucDM) as examples.

To examine the degradation Atxn1 82Q, which has …

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

We thank S. Raychaudhuri for providing the destabilized firefly luciferase mutant plasmid, and A. Glavis-bloom and N. Charan for technical assistance. This work was supported, in part, by grants from NIH (CA088868, GM060911, and CA182675).

Materials

Dulbecco's Modified Eagle Medium Life Technologies 11995-092
Fetal Bovine Serum Life Technologies 10082147
Lipofectamine 2000 Life Technologies 11668019
NP-40 Sigma-Aldrich NP40S-500ML
SDS Sigma-Aldrich L3771
MG132 Sigma-Aldrich M8699
Cycloheximide Sigma-Aldrich C7698
Dithiothreitol (DTT) Fisher Scientific 45000232
Complete Protease Inhibitor Cocktail Tablets Roche Boehringer Mannheim 4693159001
Bio-Dot Apparatus  Bio-Rad 1706545
Living Colors GFP Monoclonal Antibody Clonetech 632375
Anti-Actin mAb Rabbit, IgG Sigma-Aldrich A45060-200UL
Amino acids Sigma-Aldrich Amino acids are used for making low fluorecence culturing medium
Olympus IX-81  Inverted Fluorescence Microscope Olympus IX71/IX81
96 Well Black TC Plate w/ Transluscent Clear Bottom Sigma-Greiner 89135-048
Fluorescence Bottom Plate Reader Infinite 200® PRO TECAN Infinite 200® PRO
Cellulose acetate membrane 0.2 µm Sterlitech CA023001
Prism 5 GraphPad Statistical analysis software

Referencias

  1. Dobson, C. M. Protein folding and misfolding. Nature. 426, 884-890 (2003).
  2. Goldberg, A. L. Protein degradation and protection against misfolded or damaged proteins. Nature. 426, 895-899 (2003).
  3. Hartl, F. U., Bracher, A., Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature. 475, 324-332 (2011).
  4. Taylor, J. P., Hardy, J., Fischbeck, K. H. Toxic proteins in neurodegenerative disease. Science. 296, 1991-1995 (2002).
  5. Selkoe, D. J. Folding proteins in fatal ways. Nature. 426, 900-904 (2003).
  6. Vousden, K. H., Prives, C. Blinded by the Light: The Growing Complexity of p53. Cell. 137, 413-431 (2009).
  7. Xu, J., et al. Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nat Chem Biol. 7, 285-295 (2011).
  8. Orr, H. T., Zoghbi, H. Y. Trinucleotide repeat disorders. Annu Rev Neurosci. 30, 575-621 (2007).
  9. Guo, L., et al. A cellular system that degrades misfolded proteins and protects against neurodegeneration. Mol Cell. 55, 15-30 (2014).
  10. Chu, Y., Yang, X. SUMO E3 ligase activity of TRIM proteins. Oncogene. 30, 1108-1116 (2011).
  11. Sun, H., Leverson, J. D., Hunter, T. Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J. 26, 4102-4112 (2007).
  12. Janer, A., et al. PML clastosomes prevent nuclear accumulation of mutant ataxin-7 and other polyglutamine proteins. J Cell Biol. 174, 65-76 (2006).
  13. Bauer, P. O., et al. Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nat Biotechnol. 28, 256-263 (2010).
  14. Austin, J. A., et al. Disease causing mutants of TDP-43 nucleic acid binding domains are resistant to aggregation and have increased stability and half-life. Proc Natl Acad Sci U S A. 111, 4309-4314 (2014).
  15. Barmada, S. J., et al. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nat Chem Biol. 10, 677-685 (2014).
  16. Paxinou, E., et al. Induction of alpha-synuclein aggregation by intracellular nitrative insult. J Neurosci. 21, 8053-8061 (2001).
  17. Gupta, R., et al. Firefly luciferase mutants as sensors of proteome stress. Nat Methods. 8, 879-884 (2011).
  18. Cooper, A. A., et al. Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science. 313, 324-328 (2006).
  19. Elden, A. C., et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature. 466, 1069-1075 (2010).
  20. Fortini, M. E., Bonini, N. M. Modeling human neurodegenerative diseases in Drosophila: on a wing and a prayer. Trends Genet. 16, 161-167 (2000).
  21. Bogdanov, A. M., Kudryavtseva, E. I., Lukyanov, K. A. Anti-fading media for live cell GFP imaging. PLoS One. 7, (2012).
  22. Wanker, E. E., et al. Membrane filter assay for detection of amyloid-like polyglutamine-containing protein aggregates. Methods Enzymol. 309, 375-386 (1999).
  23. McDonald, J. H. . Handbook of Biological Statistics. 3, 173-179 (2014).
  24. Holmberg, C. I., Staniszewski, K. E., Mensah, K. N., Matouschek, A., Morimoto, R. I. Inefficient degradation of truncated polyglutamine proteins by the proteasome. EMBO J. 23, 4307-4318 (2004).
  25. Verhoef, L. G., Lindsten, K., Masucci, M. G., Dantuma, N. P. Aggregate formation inhibits proteasomal degradation of polyglutamine proteins. Human molecular genetics. 11, 2689-2700 (2002).
  26. Jana, N. R., Zemskov, E. A., Wang, G., Nukina, N. Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release. Human molecular genetics. 10, 1049-1059 (2001).
  27. Fribley, A., Zeng, Q., Wang, C. Y. Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells. Molecular and cellular biology. 24, 9695-9704 (2004).
  28. Bence, N. F., Sampat, R. M., Kopito, R. R. Impairment of the ubiquitin-proteasome system by protein aggregation. Science. 292, 1552-1555 (2001).
  29. Chen, Q., et al. Intrasarcoplasmic amyloidosis impairs proteolytic function of proteasomes in cardiomyocytes by compromising substrate uptake. Circulation research. 97, 1018-1026 (2005).
  30. Link, C. D., et al. Conversion of green fluorescent protein into a toxic, aggregation-prone protein by C-terminal addition of a short peptide. The Journal of biological chemistry. 281, 1808-1816 (2006).
check_url/es/54266?article_type=t

Play Video

Citar este artículo
Guo, L., Prall, W., Yang, X. Assays for the Degradation of Misfolded Proteins in Cells. J. Vis. Exp. (114), e54266, doi:10.3791/54266 (2016).

View Video