Materials List for: Analysis of Trunk Neural Crest Cell Migration using a Modified Zigmond Chamber Assay

Christopher C. Walheim¹, Juan Pablo Zanin², Maria Elena de Bellard¹

¹Department of Biology, California State University, Northridge

²Centro de Biología Celular y Molecular, Universidad Nacional de Córdoba

Correspondence to: Maria Elena de Bellard at mariaelena.debellard@csun.edu

URL: https://www.jove.com/video/3330 DOI: doi:10.3791/3330

Materials

Name	Company	Catalog Number	Comments
DMEM	Omega Scientific	DM-22	
Penicillin Streptomycin Solution	Omega Scientific	PS-20	100X Stock Concentration
L-Glutamine	Omega Scientific	GS-60	100X Stock Concentration
Fetal Bovine Serum	Omega Scientific	FB-11	Lot# 105247 (or another that is comparable)
Modified Zigmond chamber	Home made	N/A	Reservoir volume: ~ 160 µl ea; for additional specifications, see Fig. 4 and the supplemental fabrication protocol
Cell culture dish	Denville	T6040	40 x 10 mm
Fibronectin	BD	354008	10X Stock prepped by diluting 1 mg FN in 1 ml H ₂ O and 9 ml DMEM
Coverslips	Fisher	12-548-B	Precleaned; 22 x 22 mm
L15 medium	Thermo Scientific	SH30525.02	
Petroleum Jelly	Comforts	011110794642	100%
Centrifuge tube	Biologix	10-9152	15 ml
Dispase	Cell Systems	4Z0-850	10X Stock Concentration
Syringe	BD	309602	1 ml
Needle	BD	305127	25 G x 1.5 in.
Alexa Fluor 488-IgM	Invitrogen	A21042	Stock is 2 mg/ml; 7 moles dye/ mole IgM
Dissecting Forceps	FST	Misc.	Dumont #5 or 55; straight tipped; stainless steel or titanium
Tungsten Needle	N/A	N/A	Home made; placed in a pin holder
Blunt Forceps	Tiemann	160-18	Used for transferring embryos to Ringer's from egg yolk

Please refer to Figure 4 as a reference for the protocol below:

1. Purchase a sheet of 3/16" thick polished acrylic (4.45 mm actual thickness).

 Using a table saw, cut chamber blanks oversized to the rough dimensions of 33.25 mm x 64.57 mm. This allows 3.175 mm extra material for machining.

3. Set the chamber blank on a vise. With a milling machine and a 6.35 mm (1/4") end mill bit, finish machining the sides of the chamber to their exact dimensions: 30.07 mm x 61.39 mm.

4. Position the chamber blank on the milling machine and locate the center of the blank along both the x and y axes with an edge finder; then zero the center location.

5. Acquire the chamber height (z-axis) by touching the end mill bit to the top surface and zero the height.

- 6. Using a 3.91 mm (0.154") end mill bit, offset the bit 3.03 mm along the x-axis (positive direction) for the first reservoir. Begin machining into the chamber to a depth of 2.84 mm while moving along the y-axis (positive direction) to 7.62 mm (0.300") and then traverse to 7.62 mm (0.300") in the opposite (negative) direction to a complete reservoir length of 15.24 mm (0.600"). Offset the bit to 3.03 mm (0.119") along the x-axis (negative direction) and repeat the same process for the second reservoir.
- 7. Position the chamber on its edge and drill a hole using a 1.09 mm (0.043 in.) drill bit on the end of each reservoir (4 total) that connects the end of the reservoir to the side of the chamber for loading medium during experimentation.
- 8. Soak the chamber well in warm soapy water to help remove any chemical contaminants.
- 9. Soak and rinse the chamber well in double-distilled water to remove any soap. The chambers are now ready to use as described above.