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Abstract

For more than 20 years, reverse pharmacology has been the preeminent strategy to discover the activating ligands of orphan G protein-
coupled receptors (GPCRs). The onset of a reverse pharmacology assay is the cloning and subsequent transfection of a GPCR of interest in
a cellular expression system. The heterologous expressed receptor is then challenged with a compound library of candidate ligands to identify
the receptor-activating ligand(s). Receptor activation can be assessed by measuring changes in concentration of second messenger reporter
molecules, like calcium or cAMP. The fluorescence-based calcium mobilization assay described here is a frequently used medium-throughput
reverse pharmacology assay. The orphan GPCR is transiently expressed in human embryonic kidney 293T (HEK293T) cells and a promiscuous
Gα16 construct is co-transfected. Following ligand binding, activation of the Gα16 subunit induces the release of calcium from the endoplasmic
reticulum. Prior to ligand screening, the receptor-expressing cells are loaded with a fluorescent calcium indicator, Fluo-4 acetoxymethyl. The
fluorescent signal of Fluo-4 is negligible in cells under resting conditions, but can be amplified more than a 100-fold upon the interaction with
calcium ions that are released after receptor activation. The described technique does not require the time-consuming establishment of stably
transfected cell lines in which the transfected genetic material is integrated into the host cell genome. Instead, a transient transfection, generating
temporary expression of the target gene, is sufficient to perform the screening assay. The setup allows medium-throughput screening of
hundreds of compounds. Co-transfection of the promiscuous Gα16, which couples to most GPCRs, allows the intracellular signaling pathway to
be redirected towards the release of calcium, regardless of the native signaling pathway in endogenous settings. The HEK293T cells are easy to
handle and have proven their efficacy throughout the years in receptor deorphanization assays. However, optimization of the assay for specific
receptors may remain necessary.

Video Link

The video component of this article can be found at https://www.jove.com/video/51516/

Introduction

G protein-coupled receptors (GPCRs) constitute one of the largest and most diverse families among all cell surface proteins. Their presence
in vertebrates, invertebrates, plants, yeast, and slime mold, as well as in Protozoa and the earliest diploblastic Metazoa indicates that GPCRs
are among the oldest molecules linked with signal transduction1. Their natural activating ligands comprise a wide diversity of external stimuli
including peptides, biogenic amines, odorants, glycoproteins, and photons2. As such, these receptor-ligand signaling systems are involved
in a great variety of physiological processes. The broad functional spectrum makes them ideally suited for the development of therapeutic
drugs that cover a wide range of human diseases. About 50-60% of the current drug targets are represented by GPCRs3,4. Besides their
great importance in the pharmaceutical industry, GPCRs are also in the spotlight for the development of a new generation of species-specific
insecticides5,6 and pesticides in general. Because the natural ligands of many GPCRs are still unidentified, they are classified as orphan GPCRs.
The deorphanization of these receptors will improve the understanding of their physiological roles in organisms and may uncover putative targets
for new drug applications7.

Since the genomic era, the reverse pharmacology strategy is widely applied for the deorphanization of GPCRs8. The approach implies that an
orphan receptor is used as a ‘hook’ to ‘fish out’ its activating ligand from a biological extract or from a library of synthetic compounds. The GPCR
of interest is therefore cloned and subsequently transfected in a cellular expression system. In the most commonly used methods, receptor
activation is determined by measuring changes in the concentration of second messenger molecules9. The main receptor screening assays
rely on calcium-sensitive bioluminescent proteins (e.g., aequorin)10 or fluorescent calcium indicators (e.g., Fluo-4)11. The fluorescence-based
assays, in which receptor-expressing cells are loaded with a fluorescent calcium indicator prior to ligand screening, have the advantage that they
allow high-throughput screening due to their ease of use, short reading time, and the flexibility of screening multiple orphan receptors on a single
plate12.
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Here, the fluorescence-based calcium mobilization assay is thoroughly described and illustrated by the deorphanization process of the
Drosophila melanogaster short neuropeptide F (sNPF) receptor. This neuropeptidergic signaling system was originally characterized by Mertens
et al. in 200213 with a calcium bioluminescence assay performed in Chinese hamster ovary (CHO) cells14 and by Feng et al. in 2003 with
an electrophysiological assay using Xenopus oocytes15. The presence of the sNPF signaling system seems to be limited to the phylum of
Arthropoda, where it is implicated in a wide range of processes including the regulation of feeding, growth, stress reactions, locomotion, and
circadian rhythms16.

Research on neuropeptidergic signaling systems in insects may not only lead to new targets for the development of insecticides, but the
knowledge of their functioning may also be extrapolated towards other organisms as many signaling systems have been generally well
conserved throughout evolution17. In the last decade, great progress has been made in the deorphanization process of insect neuropeptide
GPCRs. Despite these efforts, only a small number of receptors have been matched to their cognate ligand, and loads of sequence information
for new orphan GPCRs has become available due to the booming of genomics18. The availability of medium/high-throughput screening
approaches, like the fluorescence-based calcium mobilization assay that has proven to be a widely applied technique9,18, is therefore invaluable.

The fluorescence-based calcium mobilization assay as described here is performed in the human embryonic kidney 293T (HEK293T) cell
line and uses a fluorescent probe to determine changes in intracellular calcium concentrations upon receptor activation. To guarantee high
expression and translation levels of the receptor, a Kozak consensus sequence19 is added to the 5’ end of the receptor-coding sequence, which
is subsequently cloned in an expression vector (e.g., pcDNA vector series for mammalian cell lines). As it is difficult to predict the endogenous
G protein-coupling of an orphan GPCR based on sequence information alone, the second messenger molecules (e.g., calcium or cAMP) that
are modulated after receptor activation often remain unknown prior to ligand identification. To circumvent this problem, promiscuous G proteins
of the Gq family (e.g., murine Gα15 or human Gα16 [used here]) or chimeric G proteins (e.g., Gαqi5) that interact with most GPCRs and induce
the release of calcium can be co-expressed20,21,22. Upon binding of the ligand to its receptor, the GPCR undergoes a conformational change
that leads to the activation of specific intracellular pathways. The guanosine diphosphate (GDP) molecule, bound under resting conditions to the
Gα16 subunit, will be replaced by a guanosine triphosphate (GTP) molecule. This provokes the dissociation of the heterotrimeric G protein in a
Gα16 and Gβγ subunit. The Gα16 subunit activates phospholipase Cβ (PLCβ), which in turn hydrolyzes the membrane-bound phosphatidylinositol
bisphosphate (PIP2) resulting in diacylglycerol (DAG) and inositol trisphosphate (IP3). IP3 will spread throughout the cytoplasm and activates IP3-
dependent calcium channels present in the membrane of the endoplasmic reticulum, which induces the release of calcium into the cytoplasm.

The calcium release upon receptor activation occurs within seconds and can be detected by loading cells before the screening assay with a
calcium-sensitive dye, like Fluo-4 acetoxymethyl (AM)11. The AM ester group enables the fluorophore to cross the cell membrane and is cleaved
off by cytoplasmic esterases once inside the cell. Consequently, the negative charges of the fluorescent dye are unmasked, preventing it from
diffusing out of the cell and allowing it to interact with calcium ions. The fluorescent signal of Fluo-4 is negligible in cells under resting conditions
only containing calcium concentrations in the nanomolar range. However, when calcium is released upon receptor activation, the signal can
increase concentration-dependently to more than a 100-fold, hereby ensuring a large signal-to-noise ratio. Fluo-4 also exhibits a large dynamic
range for reporting [calcium] around a Kd(calcium) of 345 nM, making it suitable to measure physiologically relevant calcium changes in a
wide range of cells. The excitation of Fluo-4 occurs at 488 nm and the emission fluorescence is measured at 525 nm11. Fluorimeters like the
fluorescence imaging plate reader (FLIPR)23, the NOVOstar, or the FlexStation (station device)12 are medium/high-throughput systems that allow
simultaneous compound addition and the detection of the Fluo-4 signal upon receptor activation for every well in an assay plate. The calcium
mobilization assay described here relies on the station device 96-well microplate system.

The SoftMax Pro software (software) is used to operate the station device as well as for data analysis. The program immediately displays the
results as graphs in 96-well format. Multiple wells can be selected simultaneously to compare the outcome of these wells on the same graph.
The relative fluorescent unit (RFU) values of wells in each column are simultaneously measured for a period of two minutes, starting before the
addition of compounds to the wells and continuing after measurement of the fluorescent signal following receptor activation. Typically, the trend
of an agonist curve aligns with the baseline until an activating compound is added to the cells, resulting in a rapid increase of the fluorescent
signal. The peak height is correlated with the final agonist concentration in the well. After the peak, the fluorescent signal slowly drops towards
the baseline level. The RFU measurements can be converted into concentration-response curves to determine the EC50 value (half maximal
effective concentration) of a ligand. In general, at least three independent screens, each including three replicas of a concentration series, should
be performed to compose a reliable concentration-response curve.

It is recommended to include several positive and negative controls in the experimental design. First of all, a transfection control, i.e. the
implementation of a receptor with a known ligand, should be tested. This allows verifying whether the transfection agent was operational.
Incorporation of a control experiment with an agonist for an endogenous receptor of the cell line and a negative control (e.g., wash buffer) are
also recommended to monitor the health and viability of the cells and to exclude the possibility that the wash buffer was contaminated with a
factor that could elicit an auto-fluorescent response. Frequently used agonists are a peptide derived from the protease-activated receptor-1
(PAR1), which acts as a PAR1 selective agonist, or carbachol, which activates the acetylcholine receptor. Cells transfected with an empty
expression vector should also be tested to exclude that active compounds interact with the cell’s endogenous receptors. Optimization of several
parameters described in the protocol below may be required for different signaling systems. A schematic figure of the complete fluorescence-
based calcium mobilization assay is depicted in Figure 1.
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Figure 1. Overall scheme of the fluorescence-based calcium mobilization assay. Automated liquid handling and simultaneous fluorescence
measurements are performed with the station device microplate reader, driven by the software. The station device contains three drawers:
one for the cell plate, compound plate and tip rack. The build-in pipettor transfers compounds from one column of the compound plate to the
corresponding column of the cell plate (step 1). Each well of the cell plate contains a monolayer of HEK293T cells that have been co-transfected
with the GPCR of interest and the promiscuous Gα16 subunit. When a compound activates the receptor, the Gα16-bound GDP is replaced by
GTP. The Gα16 subunit subsequently dissociates from the Gβγ complex and activates phospholipase Cβ (PLCβ), which in turn hydrolyzes
phosphatidylinositol bisphosphate (PIP2) resulting in diacylglycerol (DAG) and inositol trisphosphate (IP3). IP3 activates IP3-dependent calcium
channels present in the membrane of the endoplasmic reticulum, inducing the release of calcium into the cytoplasm. The interaction of calcium
with Fluo-4 (with which the cells are loaded prior to compound addition) results in a fluorescent signal (step 2). The software presents the
results as relative fluorescent unit (RFU) values in function of time, and peak heights correlate with the ligand concentration in a concentration-
dependent manner. These data can then be converted into a concentration-response curve to determine the EC50 value of a ligand-receptor pair
(step 3).

Protocol

Note: All actions in which cells are involved should be carried out in a sterile environment by working in a laminar flow.

1. Maintenance of the HEK293T Cell Line

1. Grow the HEK293T cells in a T-75 flask at 37 °C in a 5% CO2 humidified incubator.
2. Passage the cells when a confluence of 80% is reached. Note: This normally takes 3 to 4 days. Cells in continuous culture allow 20-25 usable

passages for screening.
1. Place the Dulbecco’s phosphate buffered saline (PBS) without calcium chloride and magnesium chloride, PBS-trypsin-

ethylenediaminetetraacetic acid (EDTA) (500 ml PBS supplemented with 10 ml trypsin-EDTA solution and 4.5 ml 4% EDTA) and growth
medium (500 ml Dulbecco’s modified eagle’s medium – high glucose [DMEM] supplemented with 10% fetal bovine serum [FBS] and 1
mM penicillin-streptomycin [P-S]) at room temperature half an hour in advance.

2. Remove the old growth medium from the cells. Rinse off dead cells with 3 ml PBS and remove the PBS again.
3. Add 3 ml PBS-trypsin-EDTA, incubate for 1 min at room temperature and remove the solution Note: The morphology of the cells will

change from star-shaped to sphere-shaped.
4. Loosen the cells from the bottom of the flask by gentle tapping and collect the cells by rinsing the bottom several times with 10 ml of

fresh growth medium.
5. Transfer 1 ml of the cell culture into a new T-75 flask containing 14 ml fresh growth medium, and incubate at 37 °C in a 5% CO2

humidified incubator.
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2. Transient Transfection of HEK293T Cells

1. Grow the HEK293T cells in a T-75 flask 3 days before the actual calcium mobilization assay takes place. Make sure to use three T-75
flasks, one for transfection with the receptor construct, one for transfection with an empty expression vector, as negative control, and one
for the transfection control. Note: The passaging of the cells is performed as described in step 1.2. When multiple 96-well plates have to be
screened, T-150 flasks can be used to get a higher yield of cells (to do this, double all listed quantities in steps 1.2.5, 2.3, 3.1.3 and 3.1.4).

2. Incubate the flasks at 37 °C in a 5% CO2 humidified incubator for 20-24 hr until the cell cultures approach 50-70% confluence.
3. Co-transfect one population of cells with the expression vector encoding the GPCR of interest and the Gα16 construct, the second flask

with the empty vector and the Gα16 construct, and the third with the transfection control and the Gα16 construct. Note: In this protocol, the
Drosophila sNPF receptor was cloned in a pcDNA3.1 mammalian expression vector13. JetPRIME was used to perform the transfection, but
other transfection reagents can be used as well.

1. Add a total of 7.8 µg DNA (3.9 µg receptor construct or empty vector, and 3.9 µg Gα16 expression construct) to a 1.5 ml microcentrifuge
tube and add 500 µl of the JetPRIME buffer. Mix well by vortexing the tube, and spin down shortly.

2. Add 37.5 µl of the JetPRIME reagent, vortex and spin down for 1 min at 14,000 x g. Incubate the transfection mix 10 min at room
temperature.

3. Add the transfection mix dropwise to the cell culture medium and make sure to pipette directly into the medium avoiding contact with
the walls of the culture flask. Incubate the flasks at 37 °C in a 5% CO2 humidified incubator for 20-24 hr.

3. Calcium Mobilization Assay

1. Collect the transfected cells and seed them in 96-well black-walled, clear-bottom plates.
1. Place the PBS, PBS-Trypsin-EDTA and the DMEM transfer medium (500 ml DMEM supplemented with 10% dialyzed FBS and 1% P-

S) at room temperature half an hour in advance.
2. Coat the 96-well black-walled, clear bottom plates with 60 µl of PBS with fibronectin (0.0025%) per well (5.85 ml PBS and 150 µl

fibronectin [0.1%] per plate). Incubate the plates at room temperature for 1 hr with the lid on. Remove the solution from the wells
and incubate the plates again for 1 hr without the lid on at room temperature. Alternatively, it is possible to use pre-coated plates for
enhanced cell attachment.

3. Take off the old growth medium from the cells and rinse dead cells off with 3 ml PBS and remove the PBS.
4. Add 3 ml PBS-Trypsin-EDTA, incubate for 1 min, then remove the solution. Note: The morphology of the cells changes from star-

shaped to sphere-shaped.
5. Loosen the cells from the bottom of the flask by gentle tapping and collect them by rinsing several times with 10 ml of DMEM transfer

medium. Transfer the cells into a 50 ml Falcon tube.
6. Count the number of cells per ml (performed with a NucleoCounter here, but a Burker’s chamber is acceptable). Add 100 µl of the cell

culture in a 1.5 ml microcentrifuge tube. Add 100 µl lysis buffer and mix by tapping the tube. Add 100 µl stabilizing buffer and mix by
tapping.

7. Fill a NucleoCassette with the cell suspension and count the cells with the counter. Multiply the number of cells by three, as the cells
were diluted by a factor three when adding the lysis and stabilizing buffer in step 3.1.6.

8. Dilute the cells to a final concentration of 600,000 cells/ml and seed 150 µl of the cells per well in the coated plates to obtain a cell
density of about 90,000 cells per/well. Avoid air bubbles and tap the plate to spread the cells evenly in order to get a contiguous cell
layer. Incubate the plates at 37 °C in a 5% CO2 humidified incubator for 16-24 hr.

2. Load the cells with the fluorescent dye and prepare the compound plate.
1. Prepare Hank’s balanced salt solution (HBSS)/HEPES/Ca2+/bovine serum albumin (BSA) buffer: add 165 µl CaCl2 stock solution (1

M CaCl2 in distilled water [dH2O] – store at room temperature), 500 µl HEPES stock solution (1 M HEPES in dH2O, pH 7.4 – store at
room temperature), and 0.05 g BSA to 50 ml HBSS. Note that fatty acid free BSA is used for calcium assays, as fatty acids can activate
specific receptors, impairing the calcium signal of the receptor of interest.

2. Prepare probenecid solution (100x, 250 mM): dissolve 0.71 g probenecid in 5 ml NaOH (1 M) and add 50 µl HEPES stock solution and
5 ml of the HBSS/HEPES/Ca2+/BSA buffer – always prepare fresh solution. Note: Probenecid inhibits inorganic anion transporters that
can dislodge Fluo-4 from the cytoplasm, thereby reducing the fluorescent signal. It is recommended to perform the dye loading in the
presence and absence of probenecid to determine whether inorganic anion transporters present a potential problem in the particular
cell lines under investigation, as probenecid might even decrease the agonist-mediated signal.

3. Prepare wash buffer: add 500 µl probenecid solution to 50 ml HBSS/HEPES/Ca2+/BSA buffer, adjust the pH to 7.4 and filtrate the buffer
solution. Always prepare fresh buffer, and 50 ml buffer per plate is required.

4. Prepare 10% pluronic acid solution: mix 50 µl pluronic acid (20% w/v in dimethyl-sulfoxide [DMSO]) with 50 µl DMSO – if crystallization
occurs, heat to 37 °C and always prepare fresh solution.

5. Prepare Fluo-4 AM solution (1mM): add 44 µl 10% pluronic acid solution to a vial that contains 50 µg Fluo-4 AM and vortex until it is
completely dissolved. Avoid exposure to light to prevent bleaching of the fluorophore.

6. Prepare loading buffer: add 8.8 ml DMEM supplemented with 10 mM HEPES and 2.5 mM probenecid (pH 7.4) to the Fluo-4 AM
solution (44 µl) and vortex. Always use fresh buffer.

7. Discard medium from the cells, wash the cells with 200 µl PBS per well, and remove PBS.
8. Add 55 µl loading buffer per well and incubate for 1 hr at room temperature. Wrap the plate in aluminum foil to prevent exposure of the

plate to light.
9. Make sure to dry the compounds before the screen if they are dissolved in solvents that are detrimental (e.g., acetonitrile) for the

cellular expression system.
10. Solubilize the peptides in wash buffer in siliconized 1.5 ml microcentrifuge tubes. Prepare a dilution series to perform a concentration-

response analysis and to determine the EC50 value of a ligand. Add 70 µl of the ligand in the corresponding well of the compound
plate (V-shaped 96-well plates) and include positive (endogenous agonist) and negative controls (wash buffer) on each plate. Note: If
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a compound is not soluble in the wash buffer, one can try other solvents that are not harmful for the cells under investigation, such as
water or solutions that emulsify and solubilize oils and other water-insoluble substances (e.g., Kolliphor EL).

11. Measure all samples in triplicate. Keep in mind that 50 µl of a ligand from the compound plate will be transferred into a well with 100 µl
wash buffer of the cell plate during the assay, so prepare the compounds at 3x their desired final concentration.

12. Discard the loading buffer from the cell plate and add 100 µl wash buffer to each well. Incubate the plate 15 min at room temperature
and prevent exposure to light.

13. Discard the wash buffer from the cell plate and add 100 µl new wash buffer to each well.
14. Incubate the cell plate, the compound plate, and a tip rack (96-well, station device pipette tips) for 15 min at 37 °C.

4. Assay on the Station Device

1. Create and load the desired protocol file with the software and activate the temperature control unit for the reading chamber. Here, measure
calcium responses at 37 °C for 2 min one row at a time with 1.52 sec interval between successive readings (measuring a complete 96-well
plate takes approximately 25 min) at 525 nm. Set the excitation of Fluo-4 to 488 nm and transfer a total volume of 50 µl of compound to the
cell plate, 18 sec after the reading start, with the dispense speed set at 26 µl/sec and a pipette height of 135 µl.

2. Position the compound and cell plate, and the tip rack in the appropriate drawers of the station device.
3. Perform a single read of the cell plate at the same excitation and emission wavelength in the ENDPOINT mode, before starting the actual

screen in FLEX mode. Note: This measurement gives relative fluorescence unit (RFU) values and allows detecting variability between wells
of the plate. Values between 20,000 and 40,000 are considered as acceptable.

4. Start the assay and analyze the data with the software.

Representative Results

Concentration series ranging from 50 µM to 0.001 nM were tested for all four Drosophila sNPF peptides (Drome-sNPF-1: AQRSPSLRLRFamide,
Drome-sNPF-2: SPSLRLRFamide, Drome-sNPF-3: PQRLRWamide, Drome-sNPF-4: PMRLRWamide) on HEK293T cells that transiently
express the Drosophila sNPF receptor and the promiscuous Gα16 subunit. The GPCR was activated by all four peptides in final concentrations
up to 0.1 nM, and receptor activation was concentration-dependent. Figure 2 depicts the graphs corresponding to one of three replicas of the
Drome-sNPF-1 concentration series. The negative control (wash buffer) did not induce a fluorescent signal, while the positive control (PAR1 – 1
µM) elicited strong activation of the endogenous protease-activated receptor-1, leading to a high fluorescent signal (± 30,000 RFU). It should be
noted that a deviation of the typical curve may indicate abnormalities. For example, an ongoing rise of the curve without returning to the baseline
might be related to non-receptor-mediated signals, such as the presence of calcium ionophores, or a disrupted lipid bilayer causing calcium
leaks.

The software allows entering formulas to determine the percentage of activation or the standard errors of the different concentrations among
others. The resulting data are used to compose preliminary concentration-response curves to estimate the EC50 values, as shown for the four
Drome-sNPF peptides in Figure 3. The curves of Figure 3 also include the data for the negative control where the concentration series of
the Drome-sNPF peptides were tested on HEK293T cells transfected with an empty pcDNA3.1 vector. The results indicate that the addition
of the peptides to these cells have no effect on endogenous receptors, but indeed activate the receptor of interest. The fluorescence-based
calcium mobilization assay was then repeated three times independently. Based on the preliminary concentration-response curves of the initial
screen, the tested concentrations were adapted to cover the dynamic range of the curve (Figure 4). The EC50 values of Drome-sNPF-1 (2.04 ±
1.48 nM [95% confidence interval]), Drome-sNPF-2 (5.89 ± 3.74 nM), Drome-sNPF-3 (5.55 ± 3.95 nM) and Drome-sNPF-4 (0.50 ± 1.01 nM) are
similar, indicating that they are equally potent to activate the receptor.
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Figure 2. Graphical output of the software for a receptor-mediated fluorescence response of a concentration series. Twelve final
concentrations (ranging from 50 µM to 0.001 nM) of the Drome-sNPF-1 peptide were tested on the Drome-sNPF receptor. Activation is
expressed in relative fluorescent unit (RFU) values. The upper graph gives the results of the six highest concentrations and the lower graph of
the six lowest concentrations. The positive control (+) is PAR1 (1 µM) and the negative control (-) is wash buffer.
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Figure 3. Preliminary concentration-response curves of Drosophila sNPF peptides determined by a single fluorescence-based calcium
mobilization assay. The concentration-response curves of the Drosophila sNPF receptor transiently expressed in HEK293T cells for the four
Drosophila sNPF peptides are shown in blue. For the negative controls (shown in red), peptides were tested on HEK293T cells transfected with
an empty pcDNA3.1 vector. The fluorescent responses are shown as relative (%) to the highest value (100% activation). The curves are the
result of one experiment in which each concentration series was measured in triplicate. The vertical bars represent standard errors of the mean
(SEM), which sometimes are smaller than the used symbols (in that case, only the symbols are depicted).
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Figure 4. Concentration-response curves and corresponding EC50 values of Drosophila sNPF peptides determined by three
independent fluorescence-based calcium mobilization assays. The concentration response curves of the Drosopihla sNPF receptor
transiently expressed in HEK293T cells for the four Drosophila sNPF peptides are the result of three independent measurements each
performed in triplicate (n ≥ 9). The fluorescent responses are shown as relative (%) to the highest value (100% activation). Asterisks indicate
concentrations for which n ≤ 9. Error bars indicate SEM, which sometimes are smaller than the used symbols (in that case, only the symbols are
depicted). EC50 values are shown with their 95% confidence intervals.

Discussion

The fluorescence-based calcium mobilization assay was successfully applied to confirm the functional characterization of the Drosophila
sNPF peptidergic signaling system, which was already performed by Mertens et al. with a bioluminescence assay and by Feng et al. with an
electrophysiological assay13,15. The EC50 values obtained with the fluorescence assay in HEK293T cells are about 10-fold less than those
obtained with the bioluminescence assay performed in CHO cells (Drome-sNPF-1: fluo = 2.04 nM, lumi = 51 nM; Drome-sNPF-2: fluo = 5.89 nM,
lumi = 42 nM; Drome-sNPF-3: fluo = 5.55 nM, lumi = 31 nM; Drome-sNPF-4: fluo = 0.50 nM, lumi = 75 nM). These variations can be explained
by several factors, including the fact that one of the used expression systems may be better suited for functional expression of a given receptor,
or the folding of some receptors can be less efficient in certain cell types. The EC50 values of all four Drome-sNPF peptides are in the nanomolar
range when tested on their receptor with both the fluorescence and the bioluminescence assay, generally supporting the physiological relevance
of their peptide-receptor interaction in vivo.

Note that no transfection control with a receptor for which the activating ligand is known was included in the screen presented here, because the
Drosophila sNPF signaling system is normally the transfection control in experimental setups. The positive control with an endogenous ligand of
the HEK293T cells (PAR1) and the negative control (wash buffer) were included in the screen. The results of PAR1 showed that the cells were in
a good condition. The negative control (wash buffer) did not elicit a fluorescent signal, which indicates that the medium in which the peptides are
dissolved was free of any contaminants that could influence the results.
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The previously characterized Drosophila sNPF signaling system was used here to explain the fluorescence-based calcium mobilization assay.
For this purpose, concentration series of the activating ligands were tested immediately. However, when an orphan receptor is brought to
overexpression in a screening assay to test a library containing hundreds of compounds, it is recommended to first screen with relatively high
final concentrations of the ligands (e.g., 10 or 1 µM). Following the detection of an activating compound, a dilution series of that compound can
be screened in order to compose a concentration-response curve and to determine the EC50 value.

Once the activating ligand of a receptor is determined, the intracellular signaling pathway can be further investigated by adapting the protocol.
The assay can be performed as described above, but without co-transfecting the Gα16 subunit. When a calcium response is measured, it means
that the receptor couples with an endogenous Gαq subunit of the cellular expression system. When no fluorescent signal is observed, protocols
to measure changes in concentrations of other secondary messengers (e.g., cAMP) can be applied.

Structure-activity relationship (SAR) studies can also be carried out to define the peptide’s core sequence required for receptor activation.
First, truncated sequences are assessed to define the minimal amino acid sequence of the peptide that is still able to activate the receptor.
Next, peptides can be tested in which systematically every amino acid has been substituted for an alanine residue. Testing synthetic alanine-
substitution series on the receptor allows to determine the importance of each of the amino acids for receptor activation24,25.

Despite its frequent use and proven efficacy, it has to be emphasized that the assay described here may need some adaptations to gain optimal
results for specific receptors of interest. The Gα16 subunit has the advantage that it binds to most GPCRs, but may also have a dominant-
negative effect on receptors that endogenously couple via Gαq

22. In this case, it may be useful to test different combinations of G proteins during
the optimization of a novel calcium assay and to compare the results for Gαq-coupled receptors in the absence or presence of Gα16. Alternative
assays that are independent of the interacting G protein to detect receptor activation can also be performed, such as the translocation of GFP-
labeled arrestin, or the detection of changes in membrane potential (e.g., by the FLIPR Membrane Potential Assay Kit). Besides the Fluo-4
AM used here, a wide array of other calcium-sensitive fluorophores, each with its own spectral and chemical properties, is available. The most
appropriate fluorophore can be selected based on the GPCR, cell type and the available plate reader, but experimental verification is necessary.
The amounts of transfected DNA and the DNA/transfection reagent ratio need to be determined for each receptor-transfection reagent-cell line
combination. Finally, it should be kept in mind that cells in continuous culture only allow 20-25 usable passages to perform the screening assays.

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors acknowledge the Research Foundation Flanders (FWO-Vlaanderen, Belgium, G.0601.11) and the KU Leuven Research Foundation
GOA/11/002. IB, TJ and LT benefit from a fellowship from the FWO-Vlaanderen.

References

1. Bockaert, J., & Pin, J.P. Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 18 (7), 1723-1729, doi:
10.1093/emboj/18.7.1723, (1999).

2. Gether, U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr. Rev. 21 (1), 90-113, doi:
10.1210/er.21.1.90, (2000).

3. Drews, J. Drug discovery: a historical perspective. Science. 287 (5460), 1960-1964, doi: 10.1126/science.287.5460.1960, (2000).
4. Marinissen, M. J., & Gutkind, J. S. G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol. Sci. 22 (7),

368-376, doi: 10.1016/S0165-6147(00)01678-3, (2001).
5. Bendena, W. G. Neuropeptide physiology in insects. Adv. Exp. Med. Biol. 692, 166-191, (2010).
6. Van Hiel, M. B. et al. Neuropeptide receptors as possible targets for development of insect pest control agents. Adv. Exp. Med. Biol. 692,

211-226, (2010).
7. Tang, X.-L, Wang, Y., Li, D.-L., Luo, J., & Liu M.-Y. Orphan G protein-coupled receptors (GPCRs): biological functions and potential drug

targets. Acta. Pharmacol. Sin. 33 (3), 363-371, doi: 10.1038/aps.2011.210, (2012).
8. Civelli, O., Reinscheid, R. K., Zhang, Y., Wang, Z., Fredriksson, R., & Schiöth, H. B. G protein-coupled receptor deorphanizations. Annu. Rev.

Pharmacol. Toxicol. 53, 127-146, doi: 10.1146/annurev-pharmtox-010611-134548, (2013).
9. Mertens, I., Vandingenen, A., Meeusen, T., De Loof, A., & Schoofs, L. Postgenomic characterization of G-protein-coupled receptors.

Pharmacogenomics. 5 (6), 657-672, doi: 10.1517/14622416.5.6.657, (2004).
10. Brough, S. J., & Shah, P. Use of aequorin for G protein-coupled receptor hit identification and compound profiling. Methods Mol. Biol. 552,

181-198, doi: 10.1007/978-1-60327-317-6_13, (2009).
11. Gee, K. R., Brown, K.A., Chen, W-N. U., Bishop-Stewart, J., Gray, D., & Johnson, I. Chemical and physiological characterization of fluo-4

Ca2+-indicator dyes. Cell Calcium. 27 (2), 97-106, doi: 10.1054/ceca.1999.0095, (2000).
12. Beets, I., Lindemans, M., Janssen, T., & Verleyen, P. Deorphanizing G protein-coupled receptors by a calcium mobilization assay. Methods

Mol. Biol. 789, 377-391, doi: 10.1007/978-1-61779-310-3_25, (2011).
13. Mertens, I., Meeusen, T., Huybrechts, R., De Loof, A., & Schoofs, L. Characterization of the short neuropeptide F receptor from Drosophila

melanogaster. Biochem. Biophys. Res. Commun. 297 (5), 1140-1148, doi: 10.1016/S0006-291X(02)02351-3, (2002).
14. Lu, H.-L., Kersch, C. N., Taneja-Bageshwar, S., & Pietrantonio, P. V. A calcium bioluminescence assay for functional analysis of mosquito

(Aedes aegypti) and tick (Rhipicephalus microplus) G protein-coupled receptors. J. Vis. Exp. (50), e2732, doi: 10.3791/2732, (2011).
15. Feng, G. et al. Functional characterization of a neuropeptide F-like receptor from Drosophila melanogaster. Eur. J. Neurosci. 18 (2), 227-238,

doi: 10.1046/j.1460-9568.2003.02719.x, (2003).

https://www.jove.com
https://www.jove.com
https://www.jove.com


Journal of Visualized Experiments www.jove.com

Copyright © 2014  Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

July 2014 |  89  | e51516 | Page 10 of 10

16. Nässel, D.R., & Wegener, C. A comparative review of short and long neuropeptide F signaling in invertebrates: any similarities to vertebrate
neuropeptide Y signaling? Peptides. 32 (6), 1335-1355, doi: 10.1016/j.peptides.2011.03.013, (2011).

17. Grimmelikhuijzen, C. J. P., & Hauser, F. Mini-review: The evolution of neuropeptide signaling. Regul. Pept. 177, S6-S9, doi: 10.1016/
j.regpep.2012.05.001, (2012).

18. Caers, J., Verlinden, H., Zels, S., Vandersmissen, H. P., Vuerinckx, K., & Schoofs, L. More than two decades of research on insect
neuropeptide GPCRs: an overview. Front. Endocrinol. (Lausanne). 3 (151), 1-30, doi: 10.3389/fendo.2012.00151, (2012).

19. Kozak, M. An analysis of 5’-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15 (20), 8125-8148, doi:
10.1093/nar/15.20.8125, (1987).

20. Offermanns, S., & Simon, M.I. Gα15 and Gα16 couple a wide variety of receptors to phospholipase C. J. Biol. Chem. 270 (25), 15175-15180,
doi: 10.1074/jbc.270.25.15175, (1995).

21. Conklin, B.R. et al. Carboxyl-terminal mutations of Gqα and Gsα that alter the fidelity of receptor activation. Mol. Pharmacol. 50 (4), 885-890,
(1996).

22. Kostenis, E. Is Gα16 the optimal tool for fishing ligands of orphan G-protein-coupled receptors? Trends Pharmacol. Sci. 22 (11), 560-564, doi:
10.1016/S0165-6147(00)01810-1, (2001).

23. Robas, N.M., & Fidock, M.D. Identification of orphan G protein-coupled receptor ligands using FLIPR assays. Methods Mol. Biol. 306, 17-26,
doi: 10.1385/1-59259-927-3:017, (2005).

24. Caers, J., Peeters, L., Janssen, T., De Haes, W., Gäde, G., & Schoofs, L. Structure-activity studies of Drosophila adipokinetic hormone (AKH)
by a cellular expression system of dipteran AKH receptors. Gen. Comp. Endocrinol. 177 (3), 332-337, doi: 10.1016/j.ygcen.2012.04.025,
(2012).

25. Peeters, L. et al. A pharmacological study of NLP-12 neuropeptide signaling in free-living and parasitic nematodes. Peptides. 34 (1), 82-87,
doi: 10.1016/j.peptides.2011.10.014, (2012).

https://www.jove.com
https://www.jove.com
https://www.jove.com

