
Copyright © 2020  JoVE Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported
License

jove.com June 2020 • 160 •  e61172 • Page 1 of 22

Investigating the Relationship between Sea Surface
Chlorophyll and Major Features of the South China Sea
with Satellite Information
Huan-Huan  Chen*,1,2,  Rui  Tang*,2,  Hao-Ran  Zhang*,1,2,  Yi  Yu2,  Yuntao  Wang2

1 College of Oceanography, Hohai University 2 State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry
of Natural Resources
*These authors contributed equally

Corresponding Author

Yuntao Wang

yuntao.wang@sio.org.cn

Citation

Chen, H.H., Tang, R., Zhang, H.R.,

Yu, Y., Wang, Y. Investigating the

Relationship between Sea Surface

Chlorophyll and Major Features of

the South China Sea with Satellite

Information. J. Vis. Exp. (160), e61172,

doi:10.3791/61172 (2020).

Date Published

June 13, 2020

DOI

10.3791/61172

URL

jove.com/video/61172

Abstract

Satellite observations offer a great approach to investigate the features of major

marine parameters, including sea surface chlorophyll (CHL), sea surface temperature

(SST), sea surface height (SSH), and factors derived from these parameters (e.g.,

fronts). This study shows a step-by-step procedure to use satellite observations to

describe major parameters and their relationships in seasonal and anomalous fields.

This method is illustrated using satellite datasets from 2002–2017 that were used to

describe the surface features of the South China Sea (SCS). Due to cloud coverage,

monthly averaged data were used in this study. The empirical orthogonal function

(EOF) was applied to describe the spatial distribution and temporal variabilities of

different factors. The monsoon wind dominates the variability in the basin. Thus,

wind from the reanalysis dataset was used to investigate its driving force on different

parameters. The seasonal variability in CHL was prominent and significantly correlated

with other factors in a majority of the SCS. In winter, a strong northeast monsoon

induces a deep mixed layer and high level of chlorophyll throughout the basin.

Significant correlation coefficients were found among factors at the seasonal cycle.

In summer, high CHL levels were mostly found in the western SCS. Instead of

a seasonal dependence, the region was highly dynamic, and factors correlated

significantly in anomalous fields such that unusually high CHL levels were associated

with abnormally strong winds and intense frontal activities. The study presents a step-

by-step procedure to use satellite observations to describe major parameters and their

relationships in seasonal and anomalous fields. The method can be applied to other

global oceans and will be helpful for understanding marine dynamics.
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Introduction

Remote sensing technology offers great datasets with

large spatial scales and long periods for describing marine

environments. With the increasing spatial resolution of

satellites, detailed features are now resolved from the

regional scale to a few hundred meters1 , 2 . An improved

understanding of marine dynamics can be achieved with most

updated satellite observations3 .

By incorporating multiple sensors on a remote sensing

platform, a comprehensive description of different parameters

is possible. Sea surface temperature (SST) is the basic

parameter that has been observed for more than half a

century4 . Recently, observations for sea surface chlorophyll-

a (CHL) have become available and can be used to

describe marine productivity5 . Altimetry satellites are used for

measuring sea surface height6 , 7 , which is strongly related to

mesoscale eddy activities in the global ocean8 , 9 . In addition

to eddies, frontal activities are also important for impacting

regional dynamics and primary production10 .

The major focus of the current study is to find a standard

procedure to describe the spatial distribution and temporal

variabilities of different ocean factors. In this method, SST,

CHL, SSH, and front-data, which are derived from SST

gradients, are analyzed to determine patterns. In particular,

the CHL is used to represent the productivity of the ocean, and

a method is introduced to investigate the relationship between

CHL and other ocean parameters. To validate the method,

the time period between October 2002 and September 2017

in the South China Sea was used to examine all parameters.

The method can be easily used for other regions around

the globe to capture major ocean patterns and explore how

marine dynamics impact the ecosystem.

The South China Sea (SCS) was designated as the study

region because of its relatively high coverage rate of satellite

observations. The SCS is abundant in solar radiation;

thus, the CHL is mainly determined by the availability of

nutrients11 , 12 . With more nutrients being transported into the

euphotic layer, CHL levels can increase13 . Mixing, induced

by wind, can introduce nutrients into the ocean surface

and enhance CHL14 . The SCS is uniquely dominated by a

monsoon wind system, which determines the dynamics and

ecosystem in the region. The monsoon wind is strongest

during winter15 . In summer, the winds change direction and

the wind speeds are much weaker than those in winter16 , 17 .

The wind intensity can determine the strength of vertical

mixing, such that the mixed layer depth (MLD) deepens

as the wind increases in winter and becomes shallower as

the wind decreases in summer18 . Thus, more nutrients are

transported into the euphotic layer during winter when the

wind is strong19  and CHL reaches its highest point of the

year20 , 21 .

In addition to the wind, the MLD can also be determined using

other factors, such as SST and sea level anomalies (SLAs),

which ultimately impact nutrient content and CHL22 . During

winter, the weak vertical gradient is associated with low

temperatures at the surface20 . The corresponding MLD

is deep and more nutrients can be transported upward;

thus, the CHL in the surface layer is high17 . An increasing

variation in CHL levels can be attributed to mesoscale eddies,

which induce vertical transport and mixing23 . Upwelling is

usually found in cyclonic eddies associated with depressed

SLAs8 , 9  and elevated CHL concentrations24 . Downwelling

is usually found in anticyclonic eddies associated with

elevated SLAs8 , 9  and depressed CHL concentrations24 .

https://www.jove.com
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For other seasons, the MLD becomes shallow, and mixing

becomes weak; thus, low CHL can be observed over the

majority of the basin25 . The seasonal cycles of CHL levels

are subsequently predominant for the region26 .

In addition to mixing, fronts and their associated coastal

upwelling can further modulate the CHL. The front, which

is defined as a boundary of different water masses, is

important to determine the regional circulation and ecosystem

responses27 . Frontogenesis is usually associated with

coastal upwelling and convergence28 , 29 , which can induce

nutrients and elevate the growth of phytoplankton30 . Different

algorithms have been developed to automatically identify

fronts from satellite observations, including histogram and

SST gradient methods. The latter approach is adopted in this

study28 .

The correlation of time series between CHL and different

factors offers great insights for quantifying their relationship.

The current study offers a comprehensive description of

how to use satellite observations to reveal regional marine

dynamics related to productivity. This description can be used

as a guide for investigating the surface processes in any part

of the ocean. The structure of this article includes a step-by-

step protocol, followed by descriptive results in the text and

figures. The applicability in addition to the pros and cons of

the method are subsequently discussed.

Protocol

1. Dataset acquisition

1. SST and CHL

1. Download a dataset of satellite observations

for SST and CHL from MODIS-Aqua (podaac-

tools.jpl.nasa.gov/), where the spatial resolution of

both datasets is approximately 4.5 km at daily

intervals.
 

NOTE: Structure the directories and data following the

example scripts folder available in the Supplemental

Files. Store the .nc files of the satellite data in the

'Data' folder. Add the path to the NetCDF toolbox in

the analysis software (i.e., MATLAB). Select Add with

subfolders to enclose the paths of the 'UTILITIES'

folder and its subfolders.

2. Determine the time span. To maintain consistency

among different datasets, use the same time span for

all parameters. Adjust the time span based on the

temporal coverage and use the longest observation

period among different datasets. For this protocol,

download 15 years of data from October 2002 to

September 2017.

3. Determine the spatial coverage.
 

NOTE: The designed study region is between 105°E

and 123°E and between 0° and 25°N.

4. Check preprocessing instructions. Read instructions

in the .nc files regarding the preprocessing

requirements of the SST and CHL data (e.g., whether

scaling is needed).
 

NOTE: The downloaded dataset already exclude data

over land and within 5 km of the coastline, as well as

those contaminated by clouds.

5. Load SST and CHL data into the analysis

software. Type Read_MODIS_SST in the command

window to read the SST data. Similarly, type

Read_MODIS_CHL in the command window to read

the CHL data. Transform the CHL data logarithmically

because they have a log-normal distribution31 .
 

https://www.jove.com
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NOTE: Loaded variables include SST and CHL in

three dimensions, representing meridional location,

zonal location, and time in days, respectively. The

range of SSTs is between -2 and 44, and the range of

CHL is between 0.01 and 20.

2. Sea level anomaly (SLA)

1. Download daily SLA data with a 25 km spatial

resolution from 2002–201732 .
 

NOTE: SLAs describe the difference between

observed sea surface heights and the mean

sea surface height over 20 years (1993−2012)

for a corresponding pixel. The SLA data are

processed by SSALTO/DUACS and distributed

by Archiving, Validation, and Interpretation of

Satellite Oceanographic Data (AVISO, https://

www.aviso.altimetry.fr).

2. Load data into the analysis software. Load single-

day SLA data by typing Read_SLA in the command

window.
 

NOTE: The 'Data' folder in the Supplemental Files

only includes one sample datum in the script for

illustration.

3. Wind speed

1. Obtain the wind information from an ERA-Interim

reanalysis product, which is a global atmospheric

reanalysis dataset developed by the European Center

for Medium-Range Weather Forecasts (ECMWF)33 .

Download wind data for the same period (October

2002–September 2017) to maintain consistency with

the CHL and SST data.
 

NOTE: The wind dataset has a spatial resolution

of approximately 25 km and was interpolated from

the original dataset with a spatial resolution of

approximately 0.7°.

2. Load data into the analysis software. Type

Read_WindVector in the command window to read

the one-month wind data. Calculate the monthly

mean by averaging the original data, which is at 6 h

intervals.

4. Topography

1. Download the high-resolution topography data from

the National Centers for Environmental Information

website (NCEI, https://maps.ngdc.noaa.gov/viewers/

wcs-client/). The spatial resolution is ~2 km. Obtain

the ETOPO1 data for bedrock in XYZ format for the

selected study region.

2. Load data into the analysis software. Type

Read_topography in the command window to load

the topography data into the analysis software.

2. Data preprocessing

1. Temporal average

1. Due to the large cloud coverage in the SST

and CHL data, replace the original data with 3-

day average data. To do this, after running the

Read_MODIS_SST.m and Read_MODIS_CHL.m

scripts (step 1.1.5), type Temporal_average in the

command window to run the script.

2. Interpolation into the same grid

1. Because the spatial resolution is not consistent for

different datasets, interpolate the SST and CHL data

into a spatial grid that is the same as the wind and SLA

spatial grid before making comparisons. After running

the Temporal_average.m and Read_WindVector.m

https://www.jove.com
https://www.jove.com/
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scripts, type Interpolation_grid in the command

window to run the script.

3. Wind stress and wind stress curl

1. Type Wind_stress_curl in the command window to

calculate the wind stress (WS) and wind stress curl

(WSC) using the following equations:
 

 

 

where  is the wind speed vector;  is the WS in the

same direction as the wind vector;  and  are the

WS in the east and north directions, respectively;  is

the air density (equal to 1.2 kg/m3 ); and C is the drag

coefficient (a value of 0.0015 is used) under neutral

stability conditions34 .

4. Monthly averages

1. Calculate the monthly SST, wind, and SLA time

series as 30-day averages in each pixel by typing

Monthly_average to run the script. Due to the high

cloud coverage rate, use a 60-day average as the

monthly time series for CHL, including 30 days before

to 30 days after the 15th  day of the month.

3. SST front detection

1. Spatial smoothing

1. Type Spatial_smoothing to run the script to average

the three-day SST data in each pixel.
 

NOTE: A large amount of noise was identified in the

SST data. Thus, the data were smoothed with a 3 x

3 spatial average. When no data were available in

the original 3-day averaged data, the spatial averaged

data were set as unavailable.

2. SST gradient

1. Type SST_gradient to run the script to calculate the

zonal and meridional SST gradients (i.e., Gx  and

Gy , respectively) as the SST difference between

the nearest two pixels divided by the corresponding

distance via equation (3). Use the obtained gradient

vector to calculate the total gradient, G, as a scalar

following equation (4).
 

 

3. Local maximum

1. Identify a front by testing a SST gradient value: label

a pixel as a potential frontal pixel if the value is larger

than a designated threshold. Only maintain the local

maximum pixel in the same direction perpendicular

to the gradient direction if there are connected

pixels with values larger than the threshold. Here,

define the threshold as 0.035 °C/km following former

studies10 , 28 .
 

NOTE: The corresponding script

‘Local_maximum.m’ is available in

the Supplemental Files.

4. Monthly frontal probability (FP)
 

NOTE: The frontal probability (FP) describes the

probability of observing a front.

1. Calculate the FP for a certain time span (in this case,

a monthly interval), by typing Monthly_FP to run the

script. Divide the occurrence of fronts at each pixel

during a time window by the number of days that

are free of clouds.

https://www.jove.com
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4. Spatial and temporal variability

1. Seasonal cycle

1. Calculate the seasonal cycles of different factors as

the averages of different seasons. Define the seasons

as follows: winter is from December to February,

spring is from March to May, summer is from June to

August, and fall is from September to November.
 

NOTE: The seasonal cycle is not shown in this study;

the following method is used to explain the spatial and

temporal variability instead.

2. Empirical orthogonal function (EOF)

1. Remove the temporal average and unavailable

pixels. Before conducting the EOF, subtract the

overall mean at each pixel and exclude the

locations where missing observations exceed 20%

because of cloud coverage. Load data by typing

load('Monthly_data_for_EOF.mat') in the command

window.

2. Apply an EOF to describe the spatial and

temporal variabilities of different parameters. Type

Empirical_orthogonal_function.m to run the script

to calculate the magnitude (Mag), eigenvalues (Eig),

and amplitude (Amp) of the EOFs for the dataset (i.e.,

time series of monthly averaged SST, wind stress,

wind stress curl, CHL, and FP).
 

NOTE: The function decomposes the monthly time

series into different modes, which are composed

of spatial and temporal patterns and the variance

explained by each mode decreases with increasing

mode number.

5. Intercorrelation

1. Correlation at the seasonal scale

1. Calculate the correlations between two factors

using their time series at each pixel by typing

Seasonal_correlation to run the script. Because the

seasonal cycle is not removed, check the significance

of the correlation for all correlations.

2. Correlation of an anomalous field

1. Calculate the correlations between the monthly CHL

anomalies and other factors, such as SST, WS, fronts,

and SLAs. Obtain the monthly anomalies (i.e., the

deviation from the mean status) by subtracting the

overall average for a corresponding month from the

monthly time series. Type Anomalous_correlation

to run the script and obtain the correlations.

6. Displaying information and calculating
relationships

1. Display satellite information.

1. Type Sat_SCS_Fig3457 to run the script to generate

a showcase of satellite information, including SST,

CHL, and frontal distributions. Set the current folder

as ‘scripts’ where the data ‘Sat_SCS_data.mat’ are

located.
 

NOTE:  Figure 1, Figure 2, Figure 3, and Figure 4

show SST, CHL, fronts, wind, and topography for the

selected date as an example.

2. Display the EOF result by typing Sat_SCS_Fig890.m to

run the script.
 

NOTE:  Figure 5, Figure 6, and Figure 7 describe the

spatial magnitude, monthly average, and time series of

first two modes for CHL, SST, and fronts, respectively.

https://www.jove.com
https://www.jove.com/
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3. Calculate the relationship between CHL and other factors

at seasonal timescales and for anomalous fields by

typing Sat_SCS_Fig1112.m to run the script. Obtain the

correlation map for seasonal variabilities (Figure 8) and

anomalies (Figure 9).

Representative Results

The spatial and temporal patterns of sea surface CHL in the

SCS were described using satellite observations. Satellite

information for CHL (Figure 1A) and SST (Figure 1B) can be

contaminated by cloud coverage, resulting in a large portion

of data not being usable. The reanalyzed wind (Figure 1C)

and SLA (Figure 1D) data were not impacted by daily clouds.

The topography (Figure 1E) had a prominent impact on the

spatial distribution of CHL. High CHL was mainly distributed

along the coast, where the topography is shallow. Wind was

also influenced by orography, and the lee side of mountains

was characterized by weak wind; thus, a prominent WSC was

identified southwest of the SCS. In contrast, the SLAs did not

depend much on topography, and a region of unusually high

SLAs was found in the basin of the SCS.

 

Figure 1: Original observations for major parameters on April 15, 2015.
 

(A) Sea surface chlorophyll (CHL), (B) sea surface temperature (SST), (C) wind stress curl (WSC, shading) with wind stress

(WS, vector), (D) sea surface anomaly, and (E) topography for the ocean basin. Please click here to view a larger version of

this figure.

Because of the severe cloud impact on satellite observations,

a lot of data were either not available or spatially inconsistent.

An effective and efficient method was applied to fill some

data gaps and smooth the field. The data were first replaced

with a 3-day average at each pixel, which can effectively fill

some gaps because clouds vary daily (Figure 2B). A spatial

average was further applied at each pixel such that the data

were replaced by the mean of surrounding values (3 x 3

pixels). Thus, the spatial inconsistency was greatly reduced

(Figure 2C).

https://www.jove.com
https://www.jove.com/
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Figure 2: SST for a single day on April 15, 2015.
 

(A) Original SST from MODIS, (B) three-day averaged SST, and (C) SST after spatial smoothing. Please click here to view a

larger version of this figure.

The daily distribution of SST fronts was derived from the SST

gradients (Figure 3A). The thresholds applied here effectively

captured the location of the front (Figure 3B) and ensured the

depiction of the boundaries of entire water masses (Figure

3C). The gradients and fronts were nearly identical because

the front were mainly obtained from the gradient.

https://www.jove.com
https://www.jove.com/
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Figure 3: Procedure for front detection derived from SST.
 

(A) Magnitude of the SST gradient, (B) the distribution of SST fronts in thin black lines, and (C) front distribution based on the

corresponding SST gradients. Please click here to view a larger version of this figure.

Due to cloud coverage in the CHL, SST, and front data, the

monthly average time series were calculated and applied in

this study. A random example is shown in Figure 4 for the

month of April 2015. There was no existing gap for any of

the parameters. The general patterns for different parameters

were highly consistent regarding their spatial variance. For

example, CHL was high near the coast and low in the central

basin, while the SST was low near the coast and high in the

central basin. The monthly average offered comprehensive

information to depict regional features. Fronts were mainly

distributed along the coast, where the dynamics are complex.

A large portion of the basin was free of fronts; thus, the center

of the SCS was characterized by a value close to zero (Figure

4E).

https://www.jove.com
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Figure 4: Monthly average for major parameters in April 2015.
 

(A) CHL (in logarithm scale), (B) SST, (C) WSC (shading) with WS (vector), (D) sea surface anomaly, and (E) frontal

probability (FP). Please click here to view a larger version of this figure.

Most surface features were characterized by prominent

seasonal variability, which was clearly observed using EOFs.

The EOF is a useful mathematic method that is widely used in

atmospheric and marine sciences. The method can delineate

spatial patterns and temporal signals from time series over

spatial domains28 . After spatiotemporal decomposition for

sea surface features in the SCS, the first two modes are

generally needed for describing the spatial and temporal

variabilities. The first two EOFs for CHL described 44% and

12% of the total variance, respectively. EOF1 captured a

large variance in the northern section of the SCS (Figure

5A). The corresponding monthly average of the time series

(Figure 5C) showed that CHL was elevated during the winter

and depressed during the summer. The region next to the

southwest coast was characterized by weak magnitude, and

the corresponding variability was mainly captured by EOF2

(Figure 5B). CHL values were high in the summer and

low in the winter. This was mainly out of phase compared

with the northern section. The monthly time series for EOFs

showed clear seasonal variability, and EOF2 led EOF1 by

approximately 4 months (Figure 5E).

https://www.jove.com
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Figure 5: The EOF for CHL.
 

(A) Magnitude of EOF1, (B) magnitude of EOF2, (C) monthly averaged time series for EOF1, (D) monthly average time

series for EOF2, and (E) monthly time series of EOF1 (black) and EOF2 (blue). Please click here to view a larger version of

this figure.

The explained variance in the first two EOFs for SST was

prominently high, equaling 91% and 5% for EOF1 and EOF2,

respectively. It is important to emphasize that the overall

average must be removed before conducting EOF; thus,

the mean field was excluded. EOF1 dominated the total

variance, and its magnitude was largest in the northern SCS

and decreased southward (Figure 6A). The corresponding

monthly average of the time series (Figure 6C) showed

that the SST was elevated during summer and depressed

during winter. The southern SCS was characterized by a

weak magnitude, attributed to persistent high temperatures

at low latitudes. The variability in the southern section was

mainly captured by EOF2 (Figure 6B). The corresponding

SST was enhanced between March and June, while low

values persisted in the remaining months. Prominent warming

occurred in 2010 and 2016, where the SST off the coast

southwest of the SCS was much higher than that in the

other years (Figure 6E). This interannual variability is mainly

attributed to El Niño events that reduce the southwest

summer monsoon and result in weak upwelling12 . Because

seasonal variability is the major focus of the current study, this

feature is not discussed further.

https://www.jove.com
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Figure 6: The EOF for SST.
 

(A) Magnitude of EOF1, (B) magnitude of EOF2, (C) monthly averaged time series for EOF1, (D) monthly averaged time

series for EOF2, and (E) monthly time series of EOF1 (black) and EOF2 (blue). Please click here to view a larger version of

this figure.

Because of the noisy nature of the gradient, the derived

front explained much less of the variance. Indeed, EOF1 and

EOF2 of FP only explained 19% and 9% of the total variance,

respectively. EOF1 captured the variances in the north and

northeast SCS (Figure 7A). The corresponding monthly

average of the time series (Figure 7C) showed that in those

regions, more FP occurred during winter and less during

summer. The phase off the coast southwest of the SCS was

the opposite, although the corresponding variability was much

less prominent. EOF2 captured the spring enhancement of

FP (Figure 7D) in the western SCS (Figure 7B). The monthly

time series of EOF1 and EOF2 were characterized by weak

interannual variability.

https://www.jove.com
https://www.jove.com/
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Figure 7: The EOF for FP.
 

(A) Magnitude of EOF1, (B) magnitude of EOF2, (C) monthly averaged time series for EOF1, (D) monthly averaged time

series for EOF2, and (E) monthly time series of EOF1 (black) and EOF2 (blue). Please click here to view a larger version of

this figure.

Different factors were investigated for their relationships

with CHL (Figure 8). For example, SST can be used to

understand the fundamental features of the ocean that can

influence the growth rate of phytoplankton and subsequently

impact CHL. For the majority of the SCS, there were high

correlations between SST and CHL (Figure 8A), and most of

the correlations reached more than -0.8. It is important to point

out that high correlation does not indicate causation between

these two factors. As SST reached its annual maximum in

summer, the MLD became shallowest21 . Nutrients supplied

to the euphotic layer were low because vertical mixing was

blocked by intensive stratification13 . As a result, low nutrients

limited the growth rate of phytoplankton and resulted in low

CHL. In contrast, high CHL occurred in winter when the MLD

was deeper, and low SST induced weak stratification35 .

https://www.jove.com
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Figure 8: Correlations between CHL and other factors at the seasonal scale.
 

(A) SST, (B) WS, (C) WSC, (D) FP, and (E) SLA. The gray color indicates that the correlation is nonsignificant. Spatially

averaged variables are calculated based on the green box in panel A. Their time series are used to obtain the correlation

coefficients in Table 1. This figure has been modified from Yu et al.17 . Please click here to view a larger version of this

figure.

Wind-driven mixing can be approximately gauged by WS and

was used to describe vertical mixing18 . Large correlation

coefficients, with values of approximately 0.8, were identified

between the WS and CHL levels north of the SCS (Figure

8B), particularly in the regions with the strongest winter wind

located on the northern shelf of the SCS. Weak but significant

correlations were found to the south. Correlations between

WSC and CHL were significant in the majority of the SCS

(Figure 8C), although they showed opposing trends in the

north and south. A positive correlation coefficient between

CHL and WSC was identified to the south, with negative

values were in the north. The correlation in the region

between them was not significant. The WS and CHL were

found to be strongly correlated in the corresponding region

where the winter WS was largest.

Fronts can also induce CHL variability. A large correlation was

found in the northeast and southwest of the SCS (Figure 8D).

CHL increased as frontal activities became more active36 .

The SLA showed a significant negative correlation with CHL

from the northeast SCS towards the southwest and a positive

correlation along the west coast of the SCS (Figure 8E). It is

interesting to note that the positive correlations were limited

to the region with shallow topography.

To the northeast of the SCS, all correlations were large

(Figure 8). Thus, the correlations of monthly time series

between CHL and other parameters were calculated using the

spatial average in a designated box (Figure 8A), and most

of the factors were intercorrelated with significant correlations

(top right section of Table 1). Because the seasonal cycle

dominated the time series, the correlation was no longer valid

after removing the monthly average (bottom left section of

Table 1).

Chl-a SST WS WSC FP SLA
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Chl-a -0.8 0.78 0.67 0.74 -0.71

SST -0.41 -0.47 -0.51 -0.79 0.86

WS 0.32 0.04 0.63 0.51 -0.38

WSC 0 0.08 -0.02 0.52 -0.37

FP 0.21 -0.09 0.03 0.15 -0.74

SLA -0.25 0.42 0.07 0.13 -0.08

Table 1: Correlation coefficients of the time series among factors, located northeast of the SCS, e.g., SST (sea

surface temperature), FP (frontal probability), WSC (wind stress curl) and WS (wind stress), using the box shown

in Figure 8A. The monthly averages and anomalies are shown in the top right section and left bottom section, respectively.

Numbers in bold and italics indicate that the correlation does not meet the 95% confidence level. The table has been

modified from Yu et al.17 .

The correlations in the seasonal cycle were not significant

for some regions, such as the southwest of the SCS

(Figure 8). The region is dominated by dynamic processes

(e.g., upwelling and wind-induced offshore transport) that

determine the variability in CHL17 . A significant correlation

between CHL and other factors (e.g., SST, WS, fronts, and

WSC) was identified in anomalous fields (Figure 9). The

anomalies were calculated for the monthly time series by

removing the corresponding monthly average. The effective

number of degrees of freedom could be increased, but prior

studies have shown that it does not impact the underlying

relationships among their time series28 , 37 .
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Figure 9: Correlation between CHL and other factors in the anomalous fields.
 

(A) SST, (B) WS, (C) WSC, (D) FP, and (E) SLA. The gray color indicates that the correlation is nonsignificant. Spatially

averaged variables are calculated based on the green box in panel A. The time series are used to obtain the correlation

coefficients shown in Table 2. This figure has been modified from Yu et al.17 . Please click here to view a larger version of

this figure.

In the anomalous fields, CHL and SST were significantly

correlated in the majority of the SCS (Figure 9A). When

SSTs were unusually high, CHL became unusually low, and

vice versa. Similarly, an unusually high WSC and fronts

to the southwest of the SCS induced high levels of CHL,

and vice versa (Figure 9C, 9D). In addition, a negative

correlation was found between the SLAs and CHL levels

(Figure 9E). Different lags were tested, and the correlation

only became significant if no lag was employed. Thus,

CHL was simultaneously impacted by anomalies in SST,

WSC, and fronts, as well as SLA. Their relationship was

further investigated using the spatially averaged monthly time

series southwest of the SCS, designated as a green box in

Figure 9A. The results show that most of the factors were

intercorrelated with significant correlations in the anomalous

field (bottom left section of Table 2).

Chl-a SST WS WSC FP SLA

Chl-a -0.15 0.36 0.35 0.26 -0.15

SST -0.59 -0.48 0.61 0.07 0.17

WS 0.25 -0.24 -0.14 -0.02 0.1

WSC 0.29 -0.1 0.41 0.53 -0.21

FP 0.57 -0.42 0.24 0.29 -0.42
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SLA -0.3 0.54 -0.23 -0.29 -0.47

Table 2: Correlation coefficients of the time series among factors, located southwest of the SCS, e.g., SST (sea

surface temperature), FP (frontal probability), WSC (wind stress curl) and WS (wind stress), using the box shown

in Figure 9A. The monthly average and anomalies are shown in the top right section and left bottom section, respectively.

Numbers in bold and italics indicate that the correlation does not meet the 95% confidence level. The table has been

modified from Yu et al.17 .

Supplemental Files. Please click here to download this file.

Discussion

In this study, the major features of marine systems are

described using satellite observations. The CHL, which can

be used to represent ocean production, is selected as

an indicator factor. Factors related to CHL variability were

investigated using monthly averaged time series, e.g., SST,

WS, WSC, FP and SLA. Three critical steps are described

in this study: acquiring satellite data for different parameters,

describing their spatial and temporal variabilities via EOF,

and determining interrelationships among different factors

by calculating correlation coefficients. A detailed procedure

showing the identification for daily frontal distribution, which

is derived from the SST observations, is included. Two major

approaches have been developed for SST front detection:

the gradient method10 , 38  and the histogram method39 , 40 .

The histogram method is based on a similar range of

values for SST, which can be used to divide the water

masses into different groups. The pixels with values between

different groups representing the pixel in a transitional band

are defined as fronts. On the other hand, the gradient

method separates several relatively uniform water bodies

as pixels with large gradient values. A comparison study

was conducted, and they found lower false rates using the

histogram method and fewer missed fronts using the gradient

method41 . In this study, the gradient-based method38  was

adopted following former studies10 , 28 . The algorithm can

avoid front break-up into multiple edge fragments by allowing

the magnitude to decrease to a level below a smaller

threshold. In addition to the dataset included here, other

satellite observations, such as the aerosol index, can also be

used with a similar approach.

Most of the procedures can be directly applied in other

regions or datasets. Modification may take place to change

the threshold of front detection. Because the SST gradient in

the SCS is comparable with the Eastern Boundary Current

System28 , the same thresholds were implemented for the

current study. A previous study revealed that the SST

gradient from different datasets can vary as much as three

times42 , which makes the method somehow less objective.

Substantial studies have investigated frontal activities around

the global oceans28 , 43 . The best approach to validate

fronts is to compare them with in situ observations. Yao44

described the monthly frontal distribution for the SCS. Their

results agreed well with the in situ measurements. The

overall gradient should be checked and adjusted since its

value may vary depending on the spatial resolution and

instruments. In particular, the threshold should be updated

when another SST dataset is used. A basic understanding

of the regional dynamics is fundamental to understanding

frontogenesis45 , 46 , 47 . The front detection script can be
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developed by individual authors based on the description in

this paper.

Satellite information offers a comprehensive understanding

of surface features, and a results comparison with in situ

observations can aid in evaluating credibility. However,

satellite observations are limited to the ocean surface, which

limits the application for understanding the vertical structure

of the water column. In a recent study, satellite observations

revealed that the surface CHL increased by 15 times, but

the vertical integrated value only increased by 2.5 times48 .

This difference was because the surface value was impacted

by the coeffects of phytoplankton growth and shoaling of

MLD, resulting in an unrealizable value at the surface. Thus,

the surface feature may not offer an accurate description for

the entire water column. Additionally, the influence of cloud

coverage limits the continuous observations of satellites.

Thus, monthly time series are calculated for different factors

over the same region and same period. This will guarantee

the credibility of calculating the correlations among different

factors. However, the short-period events, e.g., typhoons that

last for a few days to a week, will not be resolved.

Compared with former studies, the proposed method can

offer spatial information at the pixel level, which can help

to evaluate the dynamics in a more detailed manner. Some

former studies averaged the entire SCS as a single number

and obtained a time series. They found that an unusually

strong WS and high SST can induce anomalously high

CHL16 , which is consistent with the current result. However,

the spatial variation in the relationships was not resolved.

In this study, the basin-scale correlation between WS and

CHL was weak in the anomalous field. A large significant

correlation was only identified for certain areas, e.g., in the

center of the SCS (Figure 9B). Thus, the current method

offers a comprehensive description for investigating spatial

variations. Similarly, observations from two Bio-Argo floats

were used and revealed that WSC did not correlate with CHL

variability20 . However, the trajectories of the two floats are

only located in certain regions. In this case, it was exactly

within the band where the correlation between the CHL level

and the WSC was not significant (Figure 8D). The proposed

method is very helpful for resolving the spatial dependence

among factors, which is a fundamental characteristic of the

global ocean.

In summary, the method used here can accurately describe

the spatial distribution and temporal variability in ocean

surface features using satellite observations. With the

increasing resolution of satellite datasets, more detailed

features can be identified and investigated, which enables

a general understanding of regional features, including

CHL, SST, and SSH. The correlation of monthly time

series among different factors can aid in understanding

their dynamic relationships and potential impact on an

ecosystem49 . Because the correlation can largely vary at

different spatial locations, the proposed method offers a

detailed and comprehensive description. A similar approach

can be applied to any ocean basin worldwide, which will

be greatly helpful to improve the understanding of marine

dynamics and ecosystems.
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