Back to chapter

12.9:

Épistasie

JoVE Core
Biologie
Un abonnement à JoVE est nécessaire pour voir ce contenu.  Connectez-vous ou commencez votre essai gratuit.
JoVE Core Biologie
Epistasis

Langues

Diviser

En plus des allèles multiples,différents gènes à différents endroitspeuvent interagir et influencer des phénotypescomme le pigment de fourruredans un phénomène appelé Epistasis. Par exemple :la couleur d’un lapin est influencée par divers gènesdont la tyrosinase. Il est intéressant de noter que les animaux non pigmentésparaissant complètement blanc,ils sont homozygotes pour un allèle mutant récessifde Tyrosinase, tandis que les porteursd’un allèle dominant ont des manteaux colorés. Une telle couleur est en partie établie par un autre gèneappelée Protéine liée à la tyrosinase 1,abrégée TYRP1. Ici, la variante dominanteinduit la fourrure noire,tandis qu’une teinte brune ou chocolat résultede l’allèle récessif. Sans tenir compte des autres facteursimpliqués dans la couleur de la fourrure,lapins Hétérozygotes au moins deux loci apparaissent noirs,et quand ils s’accouplent avec leur progénitureayant deux allèles récessifs de tyrosinase,ils auront une fourrure blanche non pigmentée,indépendamment de leurs éléments TYRP1. Puisque les allèles récessifs de la tyrosinasemasquent ou cachent la couleur brune ou noire de la fourrurequi sinon seraient produites. C’est un exemple d’épistasie récessive,où la configuration tyrosinase est épistatique à TYRP1. En évaluant les interactions épistatiques,les chercheurs peuvent comprendre commentdifférentes espèces ont développé des couleurs de fourruespour s’adapter à des environnements uniques,et même déterminer si les gènes agissentdans la même voie cellulaire.

12.9:

Épistasie

En plus des allèles multiples au même locus influençant des traits, de nombreux gènes ou allèles à différents endroits peuvent interagir et influencer les phénotypes : un phénomène appelé épistasie. Par exemple, la fourrure du lapin peut être noire ou brune selon que l’animal est homozygote dominant ou hétérozygote à un locus TYRP1. Cependant, si le lapin est également homozygote récessif à un locus sur le gène de la tyrosinase (TYR), il aura une fourrure non ombragée qui semble blanche, indépendamment de ses allèles TYRP1. Il s’agit d’un exemple d’épistasie récessive et cela démontre que la plupart des systèmes biologiques impliquent de nombreux éléments génétiques qui interagissent de manière multiple et complexe.

L’épistasie

Bien que Mendel ait choisi sept traits non apparentés chez les petits pois pour étudier la ségrégation génétique, la plupart des traits impliquent de multiples interactions génétiques qui créent un spectre de phénotypes. Lorsque l’interaction de gènes ou allèles différents à différents endroits influence un phénotype, cela s’appelle l’épistasie. L’épistasie implique souvent un gène masquant ou interférant avec l’expression d’un autre (l’épistasie antagoniste). L’épistasie se produit souvent lorsque différents gènes font partie de la même voie biochimique. L’expression d’un gène peut dépendre d’un produit de gène dans la même voie biochimique.

La tyrosinase et TYRP1

Un exemple d’épistasie est la pigmentation de la fourrure chez les lapins. De nombreux gènes affectent la couleur de la fourrure d’un lapin, y compris celui appelé tyrosinase (TYR). Les animaux homozygotes dominants ou hétérozygotes à un locus tyrosinase produiront des fourrures colorées, tandis que les lapins récessifs homozygotes développent des fourrures non pigmentées qui semblent blanches. La couleur de la fourrure est également partiellement établie par un autre gène appelé protéine 1 liée à la tyrosinase, ou TYRP1. L’allèle dominant produit de la fourrure noire, et l’allèle récessif produit de la fourrure brune ou couleur chocolat.

Sans tenir compte d’autres facteurs impliqués dans la couleur du manteau, les lapins hétérozygotes aux deux locus auront de la fourrure noire. Cependant, leur progéniture qui hérite de deux allèles de tyrosinase récessifs aura la fourrure blanche et non pigmentée, indépendamment des allèles TYRP1 dont ils héritent. Il s’agit d’un exemple d’épistasie récessive parce que les allèles TYR récessifs masquent ou interfèrent avec la production d’une fourrure noire ou brune. Dans ce cas, TYR est épistatique à TYRP1.

La complexité des interactions génétiques

L’étude des interactions épistatiques permet aux chercheurs de comprendre comment différentes espèces ont développé des couleurs de fourrure pour s’adapter à des environnements uniques. En termes généraux, elle aide à déterminer la relation fonctionnelle entre les gènes, l’ordre des gènes dans une voie, et comment les différents allèles ont un impact quantitatif sur les phénotypes. En tant que tel, depuis l’introduction du concept d’épistasie, il est devenu de plus en plus clair que la plupart des systèmes biologiques impliquent de nombreux éléments génétiques qui interagissent les uns avec les autres de manière multiple et complexe.

Suggested Reading

Polster, Robert, Christos J. Petropoulos, Sebastian Bonhoeffer, and Frédéric Guillaume. “Epistasis and Pleiotropy Affect the Modularity of the Genotype–Phenotype Map of Cross-Resistance in HIV-1.” Molecular Biology and Evolution 33, no. 12 (December 2016): 3213–25. [Source]

Hoekstra, H. E. “Genetics, Development and Evolution of Adaptive Pigmentation in Vertebrates.” Heredity 97, no. 3 (September 2006): 222–34. [Source]

Phillips, Patrick C. “Epistasis—the Essential Role of Gene Interactions in the Structure and Evolution of Genetic Systems.” Nature Reviews. Genetics 9, no. 11 (November 2008): 855–67. [Source]