Back to chapter

14.2:

O Dogma Central

JoVE Core
Biologie
Un abonnement à JoVE est nécessaire pour voir ce contenu.  Connectez-vous ou commencez votre essai gratuit.
JoVE Core Biologie
The Central Dogma

Langues

Diviser

O dogma central da biologia molecular diz que aquela informação codificada no DNA é transferida para o RNA, que então direciona a síntese de proteínas com base nestas instruções. Primeiro, no processo de transcrição, DNA é usado como um modelo para sintetizar RNA mensageiro, mRNA, que representa uma cópia da fita de codificação. Exceto as timidinas que são substituídas por uracilos.Em seguida, no processo de tradução em eucariotos, o mRNA viaja para um ribossoma. Aqui, codões, grupos de três nucleotídeos no mRNA, se ligam a sequências complementares nas moléculas do RNA de transferência, tRNA, cada uma das quais está anexada a um determinado aminoácido, dependendo do codão específico. Por exemplo, o codão CCA se liga a um tRNA ligado à prolina, enquanto AGC se liga a um tRNA ligado a serina.Desta forma, o código genético especifica a ordem em que os aminoácidos são arranjados no polipeptídeo resultante. Os polipeptídeos são frequentemente então mais processados para se tornarem proteínas funcionais.

14.2:

O Dogma Central

Visão Geral

O dogma central da biologia afirma que as informações codificadas no DNA são transferidas para o RNA mensageiro (mRNA), que guia então a síntese proteica. O conjunto de instruções que permitem que a sequência de nucleótidos do mRNA seja descodificada em aminoácidos é chamado de código genético. A natureza universal deste código genético impulsionou avanços na investigação científica, agricultura e medicina.

O RNA é o Elo Perdido Entre o DNA e Proteínas

No início dos anos 1900, os cientistas descobriram que o DNA armazena todas as informações necessárias para funções celulares e que as proteínas realizam a maior parte dessas funções. No entanto, os mecanismos de conversão de informações genéticas em proteínas funcionais permaneceram desconhecidos por muitos anos. Inicialmente, acreditava-se que um único gene é diretamente convertido na sua proteína codificada. Duas descobertas cruciais em células eucarióticas desafiaram essa teoria: Primeiro, a produção de proteínas não ocorre no núcleo. Segundo, o DNA não está presente fora do núcleo. Essas descobertas desencadearam a procura por uma molécula intermediária que se liga ao DNA com produção de proteínas. Esta molécula intermediária, encontrada tanto no núcleo como no citoplasma, e associada à produção de proteínas, é o RNA.

Durante a transcrição, o RNA é sintetizado no núcleo, usando o DNA como molde. O RNA recém-sintetizado é semelhante em sequência à cadeia de DNA, exceto que a timidina do DNA é substituída por uracilo no RNA. Em eucariotas, esta transcrição primária é processada ainda mais, havendo remoção das regiões de proteína não codificantes, cortando o terminal 5’ e adicionando uma cauda poli-A ao 3’, para criar mRNA que é então exportado para o citoplasma.

As Regras para Interpretar a Sequência de mRNA Constituem o Código Genético

A tradução ocorre em ribossomas no citoplasma, onde as informações codificadas no mRNA são traduzidas em uma cadeia de aminoácidos. Um conjunto de três nucleótidos codifica para um aminoácido e esse trio é chamado de codão. O conjunto de regras que descrevem que codões especificam um aminoácido em particular compõem o código genético.

O Código Genético é Redundante

As proteínas são criadas a partir de 20 aminoácidos em eucariotas. Combinando quatro nucleótidos em conjuntos de três fornece 64 (43) possíveis codões. Isso significa que é possível que um aminoácido individual possa ser codificado por mais de um codão. Diz-se que o código genético é redundante ou degenerado. Muitas vezes, mas nem sempre, codões que especificam os mesmos aminoácidos diferem apenas no terceiro nucleótido do trio. Por exemplo, os codões GUU, GUC, GUA e GUG representam todos o aminoácido valina. No entanto, AUG é o único codão que representa o aminoácido metionina. O codão AUG também é o codão onde começa a síntese proteica e, portanto, é chamado de codão de iniciação. A redundância no sistema minimiza os efeitos nocivos das mutações. Uma mutação (ou seja, alteração) na terceira posição do codão pode não resultar necessariamente em uma alteração do aminoácido.

O Código Genético é Universal

Com algumas excepções, a maioria dos organismos procarióticos e eucarióticos usam o mesmo código genético para síntese proteica. Essa universalidade do código genético permitiu avanços na investigação científica, agricultura e medicina. Por exemplo, a insulina humana pode agora ser fabricada em grande escala em bactérias. Isso é feito usando tecnologia de DNA recombinante. O DNA recombinante consiste em material genético de diferentes espécies. Genes que codificam insulina humana são unidos com DNA bacteriano e inseridos em uma célula bacteriana. A célula bacteriana realiza transcrição e tradução para produzir a insulina humana codificada no DNA recombinante. A insulina humana resultante é usada para tratar diabetes.

Suggested Reading

Smith, Ann and Kenna Shaw. “Discovering the relationship between DNA and protein production.” Nature Education 1 no. 1 (2008):112. [Source]

Ralston, Amy and Kenna Shaw. “Reading the genetic code.” Nature Education 1 no. 1 (2008):120. [Source]