Summary

Live Imaging of Glial Cell Migration in the Drosophila Eye Imaginal Disc

Published: July 09, 2009
doi:

Summary

Here we describe a protocol to examine the migration of glial cells into the developing Drosophila eye using live microscopic analysis paired with GFP tagged glial cells.

Abstract

Glial cells of both vertebrate and invertebrate organisms must migrate to final target regions in order to ensheath and support associated neurons. While recent progress has been made to describe the live migration of glial cells in the developing pupal wing (1), studies of Drosophila glial cell migration have typically involved the examination of fixed tissue. Live microscopic analysis of motile cells offers the ability to examine cellular behavior throughout the migratory process, including determining the rate of and changes in direction of growth. Paired with use of genetic tools, live imaging can be used to determine more precise roles for specific genes in the process of development. Previous work by Silies et al. (2) has described the migration of glia originating from the optic stalk, a structure that connects the developing eye and brain, into the eye imaginal disc in fixed tissue. Here we outline a protocol for examining the live migration of glial cells into the Drosophila eye imaginal disc. We take advantage of a Drosophila line that expresses GFP in developing glia to follow glial cell progression in wild type and in mutant animals.

Protocol

Part 1: Pre-experimental set-up. One week in advance, mate flies to generate larva that express GFP under the control of a glial-specific promoter. For our experiment we visualized GFP tagged with a nuclear localization sequence expressed in glial cells using the reversed polarity (repo) promoter (3, 4). Prepare cover slips at least one day in advance by soaking 18 mm round cover slips for 10 minutes in 1% poly-L-lysine solution and air dry overnight. On the day before the experim…

Discussion

In this protocol we describe observation of glial cell migration into the eye imaginal disc using live microscopy. In our wild type example (figure 1 A-D), we used a nuclear GFP marker to observe glial cell movement in the eye disc over the course of one hour. In a mutant for a candidate gene required for glial cell migration currently under study in our laboratory, we observed a stalling of glial cell nuclei within the optic stalk during a one-hour period (figure 1 E-H). Our strategy can be adapted to visual…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Patrick Cafferty is supported by a postdoctoral fellowship from the Multiple Sclerosis Society of Canada.

Materials

Material Name Type Company Catalogue Number Comment
Poly-L-lysine Reagent Sigma P8920  
Schneider’s Insect Media Reagent Sigma S0146  
Penicillin-Streptomycin Reagent Sigma P4458  
Insulin solution from bovine pancreas Reagent Sigma I0516  
Chamlide Magnetic chamber Tool Live cell Instrument CM-R-10 35 mm dish type chamber for 18 mm coverslip
Ultra fine clipper scissors Tool Fine scientific tools 15200-00  
Dumont #5 forceps Tool Fine scientific tools 11251-20  
Fluorescent microscope Microscope Zeiss   Any fluorescent imaging system that has the necessary filters and excitation for GFP can be used.

References

  1. Aigouy, B., Lepelletier, L., Giangrande, A. Glial chain migration requires pioneer cells. J. Neurosci. 28, 11635-11641 (2008).
  2. Silies, M., Yuva, Y., Engelen, D., Aho, A., Stork, T., Klambt, C. Glial cell migration in the eye disc. J. Neurosci. 27, 13130-13139 (2007).
  3. Brand, A. H., Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 118, 401-415 (1993).
  4. Sepp, K. J., Auld, V. J. Conversion of lacZ enhancer trap lines to GAL4 lines using targeted transposition in Drosophila melanogaster. Génétique. 151, 1093-1101 (1999).
  5. Gibson, M. C., Patel, A. B., Nagpal, R., Perrimon, N. The emergence of geometric order in proliferating metazoan epitheia. Nature. 442, 1038-1041 (2006).
  6. Lee, T., Luo, L. Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci. 24, 251-254 (2001).
check_url/fr/1155?article_type=t

Play Video

Citer Cet Article
Cafferty, P., Xie, X., Browne, K., Auld, V. J. Live Imaging of Glial Cell Migration in the Drosophila Eye Imaginal Disc. J. Vis. Exp. (29), e1155, doi:10.3791/1155 (2009).

View Video