Summary

Изучение когнитивных функций у новорожденных, детей и взрослых с ближней инфракрасной спектроскопии

Published: July 28, 2009
doi:

Summary

Здесь мы опишем сбора данных и методов анализа данных для функциональных ближней инфракрасной спектроскопии (fNIRS), роман неинвазивной визуализации мозга система, используемая в когнитивной неврологии, в частности, в изучении детского развития мозга. Этот метод обеспечивает универсальный стандарт сбора данных и анализа жизненно важное значение для интерпретации данных и научных открытий.

Abstract

An explosion of functional Near Infrared Spectroscopy (fNIRS) studies investigating cortical activation in relation to higher cognitive processes, such as language1,2,3,4,5,6,7,8,9,10, memory11, and attention12 is underway worldwide involving adults, children and infants 3,4,13,14,15,16,17,18,19 with typical and atypical cognition20,21,22. The contemporary challenge of using fNIRS for cognitive neuroscience is to achieve systematic analyses of data such that they are universally interpretable23,24,25,26, and thus may advance important scientific questions about the functional organization and neural systems underlying human higher cognition.

Existing neuroimaging technologies have either less robust temporal or spatial resolution. Event Related Potentials and Magneto Encephalography (ERP and MEG) have excellent temporal resolution, whereas Positron Emission Tomography and functional Magnetic Resonance Imaging (PET and fMRI) have better spatial resolution. Using non-ionizing wavelengths of light in the near-infrared range (700-1000 nm), where oxy-hemoglobin is preferentially absorbed by 680 nm and deoxy-hemoglobin is preferentially absorbed by 830 nm (e.g., indeed, the very wavelengths hardwired into the fNIRS Hitachi ETG-400 system illustrated here), fNIRS is well suited for studies of higher cognition because it has both good temporal resolution (~5s) without the use of radiation and good spatial resolution (~4 cm depth), and does not require participants to be in an enclosed structure27,28. Participants cortical activity can be assessed while comfortably seated in an ordinary chair (adults, children) or even seated in mom s lap (infants). Notably, NIRS is uniquely portable (the size of a desktop computer), virtually silent, and can tolerate a participants subtle movement. This is particularly outstanding for the neural study of human language, which necessarily has as one of its key components the movement of the mouth in speech production or the hands in sign language.

The way in which the hemodynamic response is localized is by an array of laser emitters and detectors. Emitters emit a known intensity of non-ionizing light while detectors detect the amount reflected back from the cortical surface. The closer together the optodes, the greater the spatial resolution, whereas the further apart the optodes, the greater depth of penetration. For the fNIRS Hitachi ETG-4000 system optimal penetration / resolution the optode array is set to 2cm.

Our goal is to demonstrate our method of acquiring and analyzing fNIRS data to help standardize the field and enable different fNIRS labs worldwide to have a common background.

Protocol

Часть 1: До участников, прибывающих в лаборатории Убедитесь, что комната свободна от посторонних статей, которые могут отвлекать участников. Установка и загрузка экспериментальных протокол о fNIRS Hitachi ETG-4000 системе. Настройка вашей экспериментальной парадигмы. Экспериме…

Discussion

В этом исследовании мы показали, использование новых, неинвазивные fNIRS технологии изображения мозга для исследования функций мозга человека в отношении человеческого познания и восприятия. fNIRS сканирование мозга может представлять будущее неинвазивной визуализации мозга, особенно м…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Эта работа была поддержана грантами для LAP (PI):

Национальные институты здоровья R21 HD50558, награжден 2005-07, Национальный

Институтов Здоровья R01 HD045822, награжден 2004-09; Дана Фонда Грант,

награжден 2004-06; Канадского фонда для инноваций ("CFI" грант), награжден

2008-2012 годы; Онтарио исследовательского фонда Грант, награжден 2008-2012 гг.

Materials

Material Name Type Company Catalogue Number Comment
ETG-4000   Hitachi    
Matlab   The Mathworks   Psychology toolbox

References

  1. Quaresima, V. . J. Biomed. Opt. 10, 11012-11012 (2005).
  2. Watanabe, E. . Neurosci. Lett. 256, 49-52 (1998).
  3. Kovelman, I. . NeuroImage. 39, 1457-1471 (2008).
  4. Kovelman, I. . Brain and Language. , (2008).
  5. Bortfeld, H. . Developmental Neuropsychology. 34, 52-65 (2009).
  6. Petitto, L. A. . The Cambridge Companion to Chomsky. , (2005).
  7. Berens, M. S. . , (2009).
  8. White, K. S. . , (2008).
  9. Dubins, M. . , (2009).
  10. Dubins, M. H. . Society for Research in Child Development. , (2009).
  11. Dubins, M. H. . NeuroImage. , (2009).
  12. Ehlis, A. C. . J. Biol. Psychol. 69, 315-331 (2005).
  13. Petitto, L. A., Fischer, K., Battro, A. . The Educated Brain. , (2008).
  14. Pena, M. . Proc Natl. Acad. Sci. U. S. A.. 100, 11702-11705 (2003).
  15. Baird, A. A. . NeuroImage. 16, 1120-1125 (2002).
  16. Taga, G. . Proc. Nat.l Acad. Sci. U. S. A. 100, 10722-10727 (2003).
  17. Wilcox, T. . Dev. Science. 11, 361-370 (2008).
  18. Otsuka, Y. . NeuroImage. 34, 399-406 (2007).
  19. Watanabe, H. . NeuroImage. 43, 346-357 (2008).
  20. Kameyama, M. . NeuroImage. 29, 172-184 (2006).
  21. Arai, H. . Brain. Cogn.. 61, 189-194 (2006).
  22. Grignon, S. . Cognitive and Behavioral Neurology. 21, 41-45 (2008).
  23. Boas, D. A. . Neuroimage. 23, S275-S288 (2004).
  24. Aslin, R. N., Mehler, J. . J. of Biomed. Opt.. , 1-3 (2005).
  25. Plichta, M. M. . NeuroImage. 35, 625-634 (2007).
  26. Schroeter, M. L. . NeuroImage. 21, 283-290 (2004).
  27. Jobsis, F. F. . Science. 198, 1264-1267 (1977).
  28. Villringer, A., Chance, B. . Trends Neurosci. 20, 435-442 (1997).
  29. Kovelman, I. . Bilingualism: Language & Cognition. 11, 203-223 (2008).
  30. Jasper, H. . Electroenceph. Clin. Neurophysiol. 10, 370-371 (1958).
  31. Amaro, E. . Brain Cogn. 60, 220-232 (2006).
check_url/fr/1268?article_type=t

Play Video

Citer Cet Article
Shalinsky, M. H., Kovelman, I., Berens, M. S., Petitto, L. Exploring Cognitive Functions in Babies, Children & Adults with Near Infrared Spectroscopy. J. Vis. Exp. (29), e1268, doi:10.3791/1268 (2009).

View Video