Summary

在电生理记录果蝇胚胎

Published: May 21, 2009
doi:

Summary

从电生理记录<em>果蝇</em>胚胎允许发展肌肉和神经元的电性能,以及在谷氨酸能神经肌肉接头及中枢胆碱能和GABA能突触功能突触的特性分析。

Abstract

果蝇胚胎发育和功能的神经科学的研究是首屈一指的遗传模型。传统上,这些领域都相当彼此孤立的,很大程度上是独立的历史和科学界。然而,这些通常是不同的领域之间的接口是发展计划的基本功能的电子信号的属性和功能的化学突触在神经回路形成的最后阶段分化的收购。该接口是一个极为重要的领域进行调查。在果蝇中,这些功能开发阶段发生在胚胎发育的最后三分之一的<8小时期间(在25 ° C) 。后期发展时期,长期被视为棘手的调查,由于一个艰难的,不透水的表皮角质层的沉积。一个突破性的进展是,可以在本地应用的角质层,使后期胚胎的控制清扫手术,聚合水胶中的应用。胚胎背侧纵切口,可以平放,露出腹侧神经线和体壁肌肉的实验研究。全细胞膜片钳技术,然后可以记录单独识别的神经元和躯体肌肉。这些记录配置已被用来跟踪的外观和成熟的离子流和行动中的神经元和肌肉的潜在传播。影响这些电气特性的遗传突变体进行了表征,揭示了离子通道及相关的信号复合物的分子组成,并开始探索功能分化的分子机制。一个特别的重点一直是突触连接的大会,无论是在中枢神经系统和外围。谷氨酸能神经肌肉接头(NMJ)是最容易结合光学成像和电生理记录。玻璃吸电极是用于刺激周围神经兴奋结的电流电压钳位肌肉(EJC)录制。此记录已配置使用,以图表的突触功能的分化,并跟踪突触前谷氨酸释放属性的外观和成熟。此外,突触后性能可以独立检测,直接通过谷氨酸iontophoretic或施加压力的肌肉表面,测量谷氨酸受体字段的外观和成熟。因此,可以监视元素前和突触后单独或合并在胚胎突触。该系统已大量用于分离和鉴定基因突变体,损害胚胎的突触的形成,从而揭示了突触连接和功能的突触信号特性的规范和分化的分子机制。

Protocol

第1部分:设备和用品 果蝇胚胎的电生理记录,首先需要在胚胎夹层技术的能力,这是在另一朱庇特的视频。 果蝇胚胎的电生理记录使用标准的膜片钳记录配置。膜片钳记录设备和软件适用于许多其他准备工作也适合记录果蝇胚胎。由于果蝇胚胎粘过程中剥离的盖玻片,录音室应接受盖玻片。编制和方式,它是安装在盖玻片厚度需要一个优秀的DIC的光学?…

Discussion

果蝇胚胎的电生理记录需要手工操作和解剖。该制剂的健康,以及随之而来的录音质量,取决于一个能够迅速而整齐地准备录制脆弱的胚胎组织,然后执行实验。实验者应精通胚胎解剖和膜片钳电,然后再尝试一次都解决。

录音可以做的“修订标准”或“血淋巴样”(HL),salines几个变种之一。这两个生理盐水类之间的主要区别是:1)Na +浓度(与70毫米HL 120-…

Divulgations

The authors have nothing to disclose.

Acknowledgements

KB是由美国国立卫生研究院授予GM54544支持。

References

  1. Aravamudan, B., Fergestad, T., Davis, W. S., Rodesch, C. K., Broadie, K. Drosophila UNC-13 is essential for synaptic transmission. Nat. Neurosci. 2, 965-971 (1999).
  2. Auld, V. J., Fetter, R. D., Broadie, K., Goodman, C. S. Gliotactin a novel transmembrane protein on peripheral glia, is required to form the blood-nerve barrier in Drosophila. Cell. 81, 757-767 (1995).
  3. Baines, R. A., Bate, M. Electrophysiological development of central neurons in the Drosophila embryo. J. Neurosci. 18, 4673-4683 (1998).
  4. Baines, R. A., Robinson, S. G., Fujioka, M., Jaynes, J. B., Bate, M. Postsynaptic expression of tetanus toxin light chain blocks synaptogenesis in Drosophila. Curr. Biol. 9, 1267-1270 (1999).
  5. Baines, R. A., Uhler, J. P., Thompson, A., Sweeney, S. T., Bate, M. Altered electrical properties in Drosophila neurons developing without synaptic transmission. J. Neurosci. 21, 1523-1531 (2001).
  6. Bate, M. The embryonic development of the larval muscles in Drosophila. Development. 110, 791-804 (1990).
  7. Bate, M., Martinez Arias, A., Bate, M., Martinez Arias, A. . The Development of Drosophila melanogaster. , (1993).
  8. Baumgartner, S., JT, L. i. t. t. l. e. t. o. n., Broadie, K., MA, B. h. a. t., Harbecke, R., JA, L. e. n. g. y. e. l., Chiquet-Ehrismann, R., Prokop, A., Bellen, H. J. A Drosophila neurexin is required for septate junction and blood-nerve barrier formation and function. Cell. 87, 1059-1068 (1996).
  9. AH, B. r. a. n. d. Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 118, 401-415 (1993).
  10. Brand, A. GFP as a cell and developmental marker in the Drosophila nervous system. Methods Cell Biol. 58, 165-181 (1999).
  11. Broadie, K., Sullivan, W., Ashburner, M., Hawley, R. S. Electrophysiological Approaches to the Neuromusculature. Drosophila Protocols. , 273-296 (2000).
  12. Broadie, K., Bate, M. Development of the embryonic neuromuscular synapse of Drosophila melanogaster. J. Neurosci. 13, 144-166 (1993a).
  13. Broadie, K., Bate, M. Development of larval muscle properties in the embryonic myotubes of Drosophila melanogaster. J. Neurosci. 13, 167-180 (1993b).
  14. Broadie, K., Bate, M. Activity-dependent development of the neuromuscular synapse during Drosophila embryogenesis. Neuron. 11, 607-619 (1993c).
  15. Broadie, K., Bate, M. Synaptogenesis in the Drosophila embryo: innervation directs receptor synthesis and localization. Nature. 361, 350-353 (1993d).
  16. Broadie, K., Bellen, H. J., DiAntonio, A., Littleton, J. T., Schwarz, T. L. The absence of Synaptotagmin disrupts excitation-secretion coupling during synaptic transmission. Proc. Natl. Acad. Sci. USA. 91, 10727-10731 (1994).
  17. Broadie, K., Prokop, A., Bellen, H. J., O’Kane, C. J., Schulze, K. L., Sweeney, S. T. Syntaxin and Synaptobrevin function downstream of vesicle docking in Drosophila. Neuron. 15, 663-673 (1995).
  18. Broadie, K., Rushton, E., Skoulakis, E. C. M., Davis, R. L. e. o. n. a. r. d. o. a 14-3-3 protein involved in learning, regulates presynaptic function. Neuron. 19, 391-402 (1997).
  19. Broadie, K., Skaer, H., Bate, M. Whole-embryo culture of Drosophila: development of embryonic tissues in vitro. Roux’s Arch. Develop. Biol. 201, 364-375 (1992).
  20. Campos-Ortega, J., Hartenstein, V. . The embryonic development of Drosophila melanogaster. , (1985).
  21. Deitcher, D. L., Ueda, A., Stewart, B. A., Burgess, R. W., Kidokoro, Y., Schwartz, T. L. Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin. J. Neurosci. 18, 2028-2039 (1998).
  22. Featherstone, D. E., Broadie, K. Surprises from Drosophila: genetic mechanisms of synaptic development and plasticity. Brain Res. Bull. 53, 501-511 (2000).
  23. Featherstone, D. E., Rushton, E. M., Hilderbrand-Chae, M., Phillips, A. M., Jackson, F. R., Broadie, K. Presynaptic glutamic acid decarboxylase is required for induction of the postsynaptic receptor field at a glutamatergic synapse. Neuron. 27, 71-84 (2000).
  24. Featherstone, D. E., Davis, W. S., Dubreuil, R. R., Broadie, K. Drosophila alpha- and beta-spectrin mutations disrupt presynaptic neurotransmitter release. J Neurosci. 21, 4215-4224 (2001).
  25. Featherstone, D. E., Rushton, E., Broadie, K. Developmental regulation of glutamate receptor field size by nonvesicular glutamate release. Nat Neurosci. 5, 141-146 (2002).
  26. Featherstone, D. E., Rushton, E., Rohrbough, J., Liebl, F., Karr, J., Sheng, Q., Rodesch, C. K., Broadie, K. An essential Drosophila glutamate receptor subunit that functions in both central neuropil and neuromuscular junction. J. Neurosci. 25, 3199-3208 (2005).
  27. Fergestad, T., Davis, W. S., Broadie, K. The stoned proteins regulate synaptic vesicle recycling in the presynaptic terminal. J Neurosci. 19, 5847-5860 (1999).
  28. Fergestad, T., Wu, M. N., Schulze, K. L., Lloyd, T. E., Bellen, H. J., Broadie, K. Targeted mutations in the syntaxin H3 domain specifically disrupt SNARE complex function in synaptic transmission. J Neurosci. 21, 9142-9150 (2001).
  29. Fergestad, T., Broadie, K. Interaction of stoned and synaptotagmin in synaptic vesicle endocytosis. J Neurosci. 21, 1218-1227 (2001).
  30. Goodman, C. S., Doe, C. Q., Bate, M., Martinez Arias, A. Embryonic Development of the Drosophila Central Nervous System. In The Development of Drosophila melanogaster. , 1131-1206 (1993).
  31. Harrison, S. D., Broadie, K., Goor, J. v. a. n. d. e., Rubin, G. M. Mutations in the Drosophila Rop gene suggest a function in general secretion and synaptic transmission. Neuron. 13, 555-566 (1994).
  32. Huang, F. D., Woodruff, E., Mohrmann, R., Broadie, K. Rolling blackout is required for synaptic vesicle exocytosis. J. Neurosci. 26, 2369-2379 (2006).
  33. Jan, L. Y., Jan, Y. N. Properties of the larval neuromuscular junction in Drosophila melanogaster. J. Physiol. 262, 189-214 (1976).
  34. Jan, L. Y., Jan, Y. N. L-glutamate as an excitatory transmitter at the Drosophila larval neuromuscular junction. J. Physiol. 262, 215-236 (1976b).
  35. Kidokoro, Y., Nishikawa, K. I. Miniature endplate currents at the newly formed neuromuscular junction in Drosophila embryos and larvae. Neuroscience Research. 19, 143-154 (1994).
  36. Landgraf, M., Bossing, T., Technau, G. M., Bate, M. The origin, location, and projections of the embryonic abdominal motorneurons of Drosophila. J. Neurosci. 17, 9642-9655 (1997).
  37. Mohrmann, R., Matthies, H. J., Woodruff III, E., Broadie, K. Stoned B mediates sorting of integral synaptic vesicle proteins. Neurosciences. 153, 1048-1063 (2008).
  38. Nishikawa, K. I., Kidokoro, Y. Junctional and extrajunctional glutamate receptor channels in Drosophila embryos and larvae. J. Neurosci. 15, 7905-7915 (1995).
  39. Renden, R., Berwin, B., Davis, W., Ann, K., Chin, C. T., Kreber, R., Ganetzky, B., Martin, T. F., Broadie, K. Drosophila CAPS is an essential gene that regulates dense-core vesicle release and synaptic vesicle fusion. Neuron. 31, 421-437 (2001).
  40. Rohrbough, J., Broadie, K. Electrophysiological Analysis of Synaptic Transmission in Central Neurons of Drosophila Larvae. J. Neurophysiol. 88, 847-860 (2002).
  41. Rohrbough, J., Rushton, E., Palanker, L., Woodruff, E., Matthies, H. J., Acharya, U., Acharya, J. K., Broadie, K. Ceramidase regulates synaptic vesicle exocytosis and trafficking. J. Neurosci. 24, 7789-7803 (2004).
  42. Rohrbough, J., Rushton, E., Woodruff, E. 3. r. d., Fergestad, T., Vigneswaran, K., Broadie, K. Presynaptic establishment of the synaptic cleft extracellular matrix is required for postsynaptic differentiation. Genes Dev. 21, 2607-2628 (2007).
  43. Stewart, B. A., Atwood, H. L., Renger, J. J., Wang, J., Wu, C. F. Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions. J. Comp. Physiol.. A175, 179-191 (1994).
  44. Sweeney, S. T., Broadie, K., Keane, J., Niemann, H., O’Kane, C. J. Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron. 14, 341-351 (1995).
  45. Tsunoda, S., Salkoff, L. Genetic analysis of Drosophila neurons: Shal, Shaw, and Shab encode most embryonic potassium currents. J. Neurosci. 15, 1741-1754 (1995).
  46. Ueda, A., Kidokoro, Y. Longitudinal body wall muscles are electrically coupled across the segmental boundary in the third instar larva of Drosophila melanogaster. Invertebrate Neuroscience. 1, 315-322 (1996).
  47. Wu, C. F., Haugland, F. N. Voltage clamp analysis of membrane currents in larval muscle fibers of Drosophila. J. Neurosci. 5, 2626-2640 (1985).
  48. Yan, Y., Broadie, K. In vivo assay of presynaptic microtubule cytoskeleton dynamics in Drosophila. J Neurosci Methods. 162, 198-205 (2007).
  49. Yoshikami, D., Okun, L. Staining of living presynaptic nerve terminals with selective fluorescent dyes. Nature. 310, 53-56 (1984).
  50. Zagotta, W. N., Brainard, M. S., Aldrich, R. W. Single-channel analysis of four distinct classes of potassium channels in Drosophila muscle. J. Neurosci. 8, 4765-4779 (1988).
  51. Zhang, Y. Q., Rodesch, C. K., Broadie, K. A living synaptic vesicle marker: synaptotagmin-GFP.. Genesis. 34, 142-145 (2002).
check_url/fr/1348?article_type=t

Play Video

Citer Cet Article
Chen, K., Featherstone, D. E., Broadie, K. Electrophysiological Recording in the Drosophila Embryo. J. Vis. Exp. (27), e1348, doi:10.3791/1348 (2009).

View Video