Summary

Semi-automated Optical Heartbeat Analysis of Small Hearts

Published: September 16, 2009
doi:

Summary

We have developed a Semi-automated Optical Heartbeat Analysis method (SOHA) for analyzing high speed optical recordings from Drosophila, zebrafish and embryonic mouse hearts. We demonstrate the application of our methodology to the analysis of heart function in fruit fly and embryonic mouse hearts.

Abstract

We have developed a method for analyzing high speed optical recordings from Drosophila, zebrafish and embryonic mouse hearts (Fink, et. al., 2009). Our Semi-automatic Optical Heartbeat Analysis (SOHA) uses a novel movement detection algorithm that is able to detect cardiac movements associated with individual contractile and relaxation events. The program provides a host of physiologically relevant readouts including systolic and diastolic intervals, heart rate, as well as qualitative and quantitative measures of heartbeat arrhythmicity. The program also calculates heart diameter measurements during both diastole and systole from which fractional shortening and fractional area changes are calculated. Output is provided as a digital file compatible with most spreadsheet programs. Measurements are made for every heartbeat in a record increasing the statistical power of the output. We demonstrate each of the steps where user input is required and show the application of our methodology to the analysis of heart function in all three genetically tractable heart models.

Protocol

Click here to view an overview of the semi automated heartbeat analysis (SOHA) procedure. Semi-automated optical heartbeat analysis 1. Preprocess – This step provides information on the diastolic and systolic heart diameters. Heart edges are identified and marked during maximum diastole and systole. Optical recordings can be advanced at sl…

Discussion

The Drosophila model has proven to be a powerful genetic tool that has been used to address a variety of scientific questions ranging from embryological development to learning and memory. Recently this versatile model organism has been used to investigate the genetics of heart function. A number of attempts to quantify heart physiology in adult Drosophila have relied on observations made in intact flies through the abdominal cuticle. Most of these approaches depend upon visual observation or recordings of changes in li…

Divulgations

The authors have nothing to disclose.

Acknowledgements

KO and AC are supported by a grant and a fellowship from the American Heart Association. SIB and RB are supported by grants from NIH.

Materials

Material Name Type Company Catalogue Number Comment
MatLab software   Math Works, Inc   Required environment for the analysis software.
EM-CCD digital camera   Hamamatsu Corp. 9100 or 9300 Other high speed digital cameras will also work.
HC image data capture software   Hamamatsu Corp.   Other image capture software that produces movies in avi format will also work.
Light Microscope with 10x objective   Leica   A dipping lens that eliminates the air water interface greatly improves resolution

References

  1. Cammarato, A., Dambacher, C. M., Reedy, M. C., Knowles, A. F., Kronert, W. A., Bodmer, R., Ocorr, K., Bernstein, S. I. Myosin Transducer mutations differentially affect motor function, myofibril structure, and the performance of skeletal and cardiac muscles. Mol Biol Cell. 19 (2), 553-562 (2008).
  2. Ocorr, K., Reeves, N., Wessells, R. J., Fink, M., Chen, H. -. S. V., Akasaka, T., Yasuda, S., Metzger, J., Giles, W., Posakony, J. W., Bodmer, R. KCNQ potassium channel mutations cause cardiac arrhythmias in Drosophila that mimic the effects of aging. Proc Natl Acad Sci U S A. 104, 3943-3948 (2007).
  3. Fink, M., Callol-Massot, C., Chu, A., Ruiz-Lozano, P., Izpisua Belmonte, J. C., Giles, W., Bodmer, R., Ocorr, K. A new method for the detection and quantification of heartbeat parameters in Drosophila, zebrafish and embryonic mouse hearts. Biotechniques. 46, 101-113 (2009).
check_url/fr/1435?article_type=t

Play Video

Citer Cet Article
Ocorr, K., Fink, M., Cammarato, A., Bernstein, S. I., Bodmer, R. Semi-automated Optical Heartbeat Analysis of Small Hearts. J. Vis. Exp. (31), e1435, doi:10.3791/1435 (2009).

View Video