Summary

Analysis of DNA Double-strand Break (DSB) Repair in Mammalian Cells

Published: September 08, 2010
doi:

Summary

This article describes GFP-based fluorescence in vivo assays that separately quantify homologous recombination and nonhomologous end joining in mammalian cells.

Abstract

DNA double-strand breaks are the most dangerous DNA lesions that may lead to massive loss of genetic information and cell death. Cells repair DSBs using two major pathways: nonhomologous end joining (NHEJ) and homologous recombination (HR). Perturbations of NHEJ and HR are often associated with premature aging and tumorigenesis, hence it is important to have a quantitative way of measuring each DSB repair pathway. Our laboratory has developed fluorescent reporter constructs that allow sensitive and quantitative measurement of NHEJ and HR. The constructs are based on an engineered GFP gene containing recognition sites for a rare-cutting I-SceI endonuclease for induction of DSBs. The starting constructs are GFP negative as the GFP gene is inactivated by an additional exon, or by mutations. Successful repair of the I-SceI-induced breaks by NHEJ or HR restores the functional GFP gene. The number of GFP positive cells counted by flow cytometry provides quantitative measure of NHEJ or HR efficiency.

Protocol

In this protocol we describe the method for analysis of DNA DSB repair with chromosomally integrated reporter constructs1,2 where DSBs are induced in vivo by transient expression a rare cutting endonuclease I-SceI3. The integrated assay provides the advantage of analyzing DSB repair within the chromosomal context. However, this protocol requires prolonged cell passaging, which may be problematic when working with primary cells. An alternative approach is an extr…

Discussion

The fluorescent NHEJ and HR reporter assays provide a quantitative way for separately measuring each DSB repair pathway in vivo. The assays are very sensitive, as FACS can reliably detect 10 GFP+ cells in 20,000 cells. The assays may be adapted for measuring repair events in “real time” by detecting the appearance of GFP+ cells within minutes or hours after induction of DSBs2. Furthermore, the analysis of GFP+ cells does not rely on additional cell proliferation, allowing DSB repair to be analyzed a…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The original GFP-Pem1 was a gift from Dr. Lei Li. This work was supported by grants from the NIH and the Ellison Medical Foundation to V.G. and A.S.

Materials

Material Name Type Company Catalogue Number Comment
EndoFree Plasmid Maxi kit   Qiagen 12362  
Qiaex II Gel Extraction Kit   Qiagen 20021  
Amaxa Nucleofector   Lonza AAD-1001  
Geneticin (G418)   Invitrogen 11811-031  
pDsRed2-N1   Clontech 632406  
Round bottom tubes   BD Falcon 352058 FACS tubes

References

  1. Mao, Z., Seluanov, A., Jiang, Y., Gorbunova, V. TRF2 is required for repair of nontelomeric DNA double-strand breaks by homologous recombination. Proc Natl Acad Sci U S A. 104, 13068-13073 (2007).
  2. Mao, Z., Bozzella, M., Seluanov, A., Gorbunova, V. Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair (Amst). 7, 1765-1771 (2008).
  3. Rouet, P., Smih, F., Jasin, M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A. 91, 6064-6068 (1994).
  4. Mao, Z., Jiang, Y., Xiang, L., Seluanov, A., Gorbunova, V. DNA repair by homologous recombination, but not by nonhomologous end joining, is elevated in breast cancer cells. Neoplasia. 11, 683-691 (2009).
  5. Seluanov, A., Mittelman, D., Pereira-Smith, O. M., Wilson, J. H., Gorbunova, V. DNA end joining becomes less efficient and more error-prone during cellular senescence. Proc Natl Acad Sci U S A. 101, 7624-7629 (2004).
  6. Mao, Z., Bozzella, M., Seluanov, A., Gorbunova, V. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle. 7, 2902-296 (2008).
check_url/fr/2002?article_type=t

Play Video

Citer Cet Article
Seluanov, A., Mao, Z., Gorbunova, V. Analysis of DNA Double-strand Break (DSB) Repair in Mammalian Cells. J. Vis. Exp. (43), e2002, doi:10.3791/2002 (2010).

View Video