Summary

グラミシジンベースの蛍光アッセイ、脂質二重層のプロパティの変更の可能性小分子を決定するための

Published: October 13, 2010
doi:

Summary

我々は、グラミシジンチャネル活性の尺度としての蛍光消光の速度を監視し、高速蛍光ベースのアッセイをご紹介。グラミシジンのチャンネルは、タンパク質にまたがる二重層により検知されたとして、脂質二重層の特性の変化を監視するための分子力変換器として使用されています。

Abstract

多くの薬と生物学的機能を調節するために使用される他の小さな分子は両親媒性脂質二重層/溶液界面のその吸着であり、それによって脂質二重層のプロパティを変更する。膜タンパク質がエネルギー的に疎水性相互作用によって、そのホストの二重層に結合されているため、これは重要です。二重層の特性の変化は、このように両親媒性物質は、タンパク質の機能と"オフターゲット"薬の効果の可能なメカニズムを変調するための間接的な方法を提供する、膜タンパク質の機能を変化させる。我々は以前のプローブ3,12のような線形グラミシジンのチャンネルを使用して、脂質二重層の特性の変化を検出するための電気生理学的ア ​​ッセイを開発した。グラミシジンのチャンネルは2つの非導電性サブユニットのtransbilayer二量体化によって形成されるミニ蛋​​白質である。彼らはそれらのタンパク質にまたがる二重層により検知されたとして、脂質二重層の特性の変化を監視するための強力なプローブになる彼らの膜環境の変化に敏感です。我々は現在、プローブと同じチャンネルを使用して二重層の特性の変化を検出するための蛍光アッセイを示す。アッセイは、グラミシジンのチャンネルを通じて、クエンチャーのエントリに起因する蛍光体にロードされた大きな単ラメラ小胞からの蛍光消光の時間経過を測定することに基づいています。我々は、蛍光指示薬/消光剤ペア8 -アミノナフタレン-1,3,6 – trisulfonate(ANTS)/ TL +を正常他の蛍光消光アッセイ5,13で使用されている使用してください。 TL +はゆっくり8脂質二重層に浸透がグラミシジンのチャンネル1,14を実施を通じて容易に通過する。このメソッドは、両方の効果機序の研究と二重層-摂動のための小分子のハイスループットスクリーニング、および潜在的な"オフターゲット"のための拡張性と最適です。我々は、このメソッドを使用して結果が以前の電気生理学的結果12とよく一致していることがわかります。

Protocol

1。 ANTS充填リポソームを生成する 1日目に、脂質から有機溶媒を除去。 冷凍庫から脂質を取り外して、常温に平衡させる。 25mLの丸底フラスコにクロロホルム溶液25 mg / mLの(1,2 – dierucoyl – sn -グリセロ-3 – ホスホコリン)脂質0.6 mLを加え。 すべてのクロロホルムが蒸発し、脂質コートフラスコの全体の下半分の薄い白色フィルム完了するまで、窒素下で乾燥しなが…

Discussion

私たちは、麻薬や他の小さな両親媒性物質の二重層変更の可能性を決定するための高速な蛍光ベースのアッセイを実証している。二重層のプロパティを変更する化合物は、おそらく"オフターゲット"薬の効果に​​貢献し、間接的、非特異的に膜タンパク質の機能を変更する可能性があります。アッセイは、二重層貫通タンパク質によって感知される二層プロパティの変更12の…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我々は、多くの刺激的な議論のためにマイケルJ.ブルーノ、ラッダRusinovaとジョンT.サックに感謝。 NIH、R01GM021342とARRAサプリメントR01GM021342 – 35S1、及びOSAのジョサイアメイシー、ジュニア財団からの財政支援、トライ- I HII用CMBプログラム、およびアイリスL.とレヴェレットS.ウッドワース医学者フェローシップとNIH MSTP助成金RK用GM07739。

Materials

Material Name Type Company Catalogue Number Comment
ANTS   Invitrogen A-350  
gramicidin   Sigma Chemical Co G-5002  
1,2-dierucoyl-sn-glycero-3-phosphocholine   Avanti Polar Lipids 850398C  
Mini-Extruder kit   Avanti Polar Lipids 610000  
PD-10 Desalting column   Sigma-Aldrich Made by GE Healthcare 54805  

References

  1. Andersen, O. S., Giebisch, G. H., Purcel, E. F. Ion transport through simple membranes. Renal Function. , (1978).
  2. Andersen, O. S., Koeppe, R. E. Bilayer thickness and membrane protein function: An energetic perspective. Annu. Rev. Biophys. Biomol. Struct. 36, 107-130 (2007).
  3. Andersen, O. S., Koeppe, R. E., Roux, B., Chung, S. -. H., Andersen, O. S., Krishnamurthy, V. Gramicidin channels. Versatile tools. Biological Membrane Ion Channels: Dynamics, Structure, and Applications. , (2007).
  4. Berberan-Santos, M. N., Bodunov, E. N., Valeur, B. Mathematical functions for the analysis of luminescence decays with underlying distributions 1. Kohlrausch decay function (stretched exponential. Chem. Phys. 315, 171-182 (2005).
  5. Bruggemann, E. P., Kayalar, C. Determination of the molecularity of the colicin E1 channel by stopped-flow ion flux kinetics. Proc. Natl. Acad. Sci. USA. 83, 4273-4276 (1986).
  6. Bruno, M. J., Koeppe, R. E., Andersen, O. S. Docosahexaenoic acid alters bilayer elastic properties. Proc. Natl. Acad. Sci. USA. 104, 9638-9643 (2007).
  7. Buboltz, J. T., Feigenson, G. W. A novel strategy for the preparation of liposomes: rapid solvent exchange. Biochim. Biophys. Acta. 1417, 232-245 (1999).
  8. Gutknecht, J. Cadmium & thallous ion permeabilities through lipid bilayer membranes. Biochim. Biophys. Acta. 735, 185-188 (1983).
  9. Ingólfsson, H. I., Koeppe, R. E., Andersen, O. S. Curcumin is a modulator of bilayer material properties. Biochimie. 46, 10384-10391 (2007).
  10. Keserü, G. M., Makara, G. M. The influence of lead discovery strategies on the properties of drug candidates. Nat. Rev. Drug Discov. 8, 203-212 (2009).
  11. Leeson, P. D., Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov. 6, 881-890 (2007).
  12. Lundb k, J. A., Collingwood, S. A., Ingólfsson, H. I., Kapoor, R., Andersen, O. S., S, O. Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. J. R. Soc. Interface. 7, 373-395 (2010).
  13. Moore, H. P. &. a. m. p. ;. a. m. p., Raftery, M. A. Direct spectroscopic studies of cation translocation by Torpedo acetylcholine receptor on a time scale of physiological relevance. Proc. Natl. Acad. Sci. USA. 77, 4509-4513 (1980).
  14. Neher, E. Ionic specificity of the gramicidin channel and the thallous ion. Biochim. Biophys. Acta. 401, 540-544 (1975).
  15. O’Connell, A. M., Koeppe, R. E., Andersen, O. S. Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association. Science. 250, 1256-1259 (1990).
  16. Søgaard, R. GABAA receptor function is regulated by lipid bilayer elasticity. Biochimie. 45, 13118-13129 (2006).
  17. Waring, M. J. Defining optimum lipophilicity and molecular weight ranges for drug candidates-Molecular weight dependent lower logD limits based on permeability. Bioorg. Med. Chem. Lett. 19, 2844-2851 (2009).
check_url/fr/2131?article_type=t

Play Video

Citer Cet Article
Ingólfsson, H. I., Sanford, R. L., Kapoor, R., Andersen, O. S. Gramicidin-based Fluorescence Assay; for Determining Small Molecules Potential for Modifying Lipid Bilayer Properties. J. Vis. Exp. (44), e2131, doi:10.3791/2131 (2010).

View Video