Summary

在使用功能性磁共振成像和头部撞击遥测系统的青年与体育有关的震荡影响的调查

Published: January 12, 2011
doi:

Summary

本文提供了一个多模态的方法,轻度创伤性脑损伤的诊断和恢复在青年的概述。这种方法结合了神经心理测试,功能磁共振成像和头部撞击遥测系统,以监测在认知测试头的影响和大脑活动之间的关系。

Abstract

在参与体育运动的孩子们最常见的受伤之一是脑震荡或轻度脑外伤(mTBI)1 。参与有组织的体育活动,如竞争曲棍球的儿童及青少年更容易出现剧烈震荡,在参与体力活动休闲2的儿童相比,近6倍。而最常见的认知mTBI后遗症出现类似的儿童和成年人,恢复配置文件和广度儿童的后果在很大程度上仍然不明2,因为没有受伤前的特征(如性别)和受伤的细节(影响大小和方向长期结果的影响)。如曲棍球,竞技体育,允许利用一个前后期的设计,以获得在受伤前的数据,前脑震荡发生在青年的特点和运作,并与这结果损伤后的难得机遇。我们的首要目标是完善小儿脑震荡诊断和基于研究的证据表明,是儿童和青年的具体管理。要做到这一点,我们使用新的,多模式和一体化的方法,将:

  1. 评估头部外伤的直接影响,在青年
  2. 监测脑震荡后症状的决议(PCS)和复苏过程中的认知表现
  3. 利用新的方法来验证性脑损伤和恢复

为了实现我们的目标,我们已经实施的头部撞击遥测(HIT)的系统。 (Simbex;黎巴嫩,新罕布什尔州,美国)。该系统配备市售伊斯顿S9的曲棍球头盔(伊斯顿贝尔体育范Nuys,CA,美国)设计的单轴加速度计,实时头部加速度测量过程中接触的运动项目参与3 – 5。利用遥测技术,加速,并在参与体育活动的所有头影响的位置的大小,可以客观地检测和记录。我们还使用功能性磁共振成像(fMRI)定位和评估在颞额叶的神经活动的变化表现在认知任务,因为这些是最敏感震荡颅脑损伤6的脑区。最后,我们收购构造成像脑白质损伤的敏感数据。

Protocol

1。受伤前的神经心理学的Baseline Profile获取主题到达主体进行测试之前,确保所有设备的正常运行,准备进行测试,该房间是不必要​​的分心。 在审查父母和当事人的同意,测量和记录受试者的身高,体重,头围。 管理平衡的评估,同时受力板是站在下列条件的顺序为:A1 – 力板,睁眼; A2 – 力板,闭眼; A3 – 力板,而穿着的视觉冲突圆顶。 广场AirexBalance垫力板和重?…

Discussion

我们预测显示脑白质影响最大的青少年将显示大脑活动的最大的重组,最长的行为和神经恢复时期。这项研究将提供一个更好地了解小儿脑震荡后的事件和医疗上有重大影响,因为它将使我们能够建立一个回收协议,基于研究的证据表明,是儿童和青年的具体。这样一个协议,然后可以转换为利益相关者,包括父母,教练和医生。为了实现这些目标,我们将定性和量化,进一步在小儿脑震荡运动?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们要感谢加拿大卫生研究所(CIHR)和安大略省Neurotrauma基金会(ONF)已为这项研究提供资金的机构。

Materials

Name Company Comments
AccuGait Portable Gait and Balance Platform
(Balance Assessment)
AMTI www.amti.biz
NetForce Balance Data Acquisition Software AMTI www.amti.biz
Visual Conflict Dome   Fabricated by researchers; modeled after: Lovell MR, Collins MW. Neuropsychological assessment of the college football player. J Head Trauma Rehabil. 1998;13(2):9-26.
Airex Balance Pad Airex www.bebalanced.net
Smedlay’s Dynamometer, 100 kg(Grip Strength) TTM, Tokyo  
Grooved Pegboard Test Lafayette Instrument Company www.lafayetteinstrument.com
Axon Jump Mat Vacumed www.vacumed.com
Strength Bar   Fabricated by researchers:
  • 31″ titanium lacrosse handle
  • Two 40″ utility chains
  • 24″ x 26″ plywood platform
  • Two dock ring fasteners
  • Two U-bolts (1″ width)
Head Impact Telemetry (HIT) System Simbex www.simbex.com
Post-Concussion Symptoms Scale Revised (PCS-R)   Adapted from:
Lovell MR, Collins MW. Neuropsychological assessment of the college football player. J Head Trauma Rehabil. 1998;13(2):9-26.
GE Discovery™ MR750 3.0T MRI Scanner GE www.gehealthcare.com
GE 8 channel head coil GE www.gehealthcare.com
Lumitouch Reply System Lightwave Medical Industries Vancouver, BC 1-(604)-875-4529
Back projection screen (for presenting fMRI stimuli) Unknown  
Disposable foam ear plugs PAR Inc. www.parinc.com
Neuropsychological Tests Pearson Assessments www.pearsonassessments.com

References

  1. Browne, G. J., Lam, L. T. Concussive head injury in children and adolescents related to sports and other leisure physical activities. Br. J .Sports Med. 40, 163-168 (2006).
  2. McCrory, P., Collie, A., Anderson, V., Davis, G. Can we manage sport related concussion in children the same as in adults. Br. J .Sports Med. 38, 516-519 (2004).
  3. Brolinson, P. G. Analysis of linear head accelerations from collegiate football impacts. Curr. Sports Med. Rep. 5, 23-28 (2006).
  4. Duma, S. M. Analysis of real-time head accelerations in collegiate football players. Clin. J. Sport Med. 15, 3-8 (2005).
  5. Schnebel, B., Gwin, J. T., Anderson, S., Gatlin, R. In vivo study of head impacts in football: a comparison of National Collegiate Athletic Association Division I versus high school impacts. Neurosurgery. 60, 490-495 (2007).
  6. Chen, J. K. Functional abnormalities in symptomatic concussed athletes: an fMRI study. Neuroimage. 22, 68-82 (2004).
  7. Glover, G. H., Law, C. S. Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts. Magn. Reson. Med. 46, 515-522 (2001).
  8. Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., Watkins, K. E., Ciccarelli, O., Cader, M. Z., Matthews, P. M., Behrens, T. E. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 31, 1487-1505 (2006).
  9. Gibson, E., Gao, F., Black, S. E., Lobaugh, N. J. Automatic Segmentation of White Matter Hyperintensities in FLAIR images at 3T. J. Magn. Reson. Imaging. , (2009).
  10. McIntosh, A. R., Bookstein, F. L., Haxby, J. V., Grady, C. L. Spatial pattern analysis of functional brain images using Partial Least Squares. NeuroImage. 3, 143-157 (1996).
  11. McIntosh, A., Gonzalez-Lima, F. Network interactions among limbic cortices, basal forebrain and cerebellum differentiate a tone conditioned as a Pavlovian excitor or inhibitor: fluorodeoxyglucose and covariance structural modeling. J. Neurophysiol. 72, 1717-1733 (1994).
  12. McIntosh, A., Lobaugh, N. Partial least squares analysis of neuroimaging data: applications and advances. Neuroimage. 23, 250-263 (2004).
  13. Frackowiack, R. S. J., Frith, C. D. . Human Brain Function. , (2003).
check_url/fr/2226?article_type=t

Play Video

Citer Cet Article
Keightley, M., Green, S., Reed, N., Agnihotri, S., Wilkinson, A., Lobaugh, N. An Investigation of the Effects of Sports-related Concussion in Youth Using Functional Magnetic Resonance Imaging and the Head Impact Telemetry System. J. Vis. Exp. (47), e2226, doi:10.3791/2226 (2011).

View Video