Summary

机械操纵控制神经元轴突的发展

Published: April 10, 2011
doi:

Summary

应用在2-1000 microdyne范围内的神经元上的力量和直接测量是实现与高精密校准的玻璃针。这种方法可以用来控制和测量轴突发展的几个方面,包括轴突起始,轴突紧张,轴突伸长速度,和力矢量。

Abstract

细胞操作和神经轴突的延伸,可以校准玻璃微纤维能够测量和应用在10-1000μdyne范围1,2的力量来完成。力的测量是通过观察Hookean弯曲的玻璃针,这是直接和实证方法3校准获得。设备制造,校准,处理和使用的针头对细胞的要求和程序进行了全面介绍。力制度与以前使用的不同的细胞类型,这些技术已应用示范的方法的灵活性,并为今后的调查4-6的例子给出。技术优势是连续的“可视化”的操作所产生的力量和能力在各种细胞活动的直接干预。这些措施包括直接刺激和调节轴突生长和回缩 7,以及分队,对任何类型的培养细胞 8机械测量。

Protocol

1。使玻璃针。 一个可调的微针车夫是用来制造一个约4毫米长,已关闭了坚实的梁锥尖的针。相对于长期的灵活的提示,这短短的4毫米的长度将限制在实验过程中针尖的振动。在4毫米的光纤近端地区,针锥迅速从玻璃管的直径在1毫米至15微米,而最远端1毫米的纤维直径为2.5微米。我们使用的R – 6玻璃毛细管,外径为0.9毫米,编号0.6毫米8“长度和BB – CH车夫。如果研究者感兴趣的是在测?…

Discussion

技术应用和测量细胞的力量,有着悠久历史9。我们的方法最初是由丹尼斯布雷,谁使用玻璃针,类似我们的“拖”的神经元在一个恒定的速率使用机动液压设备10的工作积极性。有许多细胞,其中包括应用力量的替代手段:步进电机11,磁珠12日,13微束和流体流动14。后者是类似于我们的做法,在蜂窝探头最终是对一个已知的刚度弯曲梁校准和蜂窝测量?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

在这种方法的发展,我们非常感谢博士罗伯特E巴克斯鲍姆的重要贡献。

Materials

Material Name Type Company Catalogue Number Comment
R-6 cap. Tube   Drummond Scientific Co., Broomall, PA, USA 9-000-3111 R-6 glass OD 0.9mm, ID 0.6 mm, 8″
BB-CH puller   Mecanex S.A., Geneva, Switzerland BB-CH puller Use Mode 4 Alt by CP=100, PP=10, SP1=1000, SP2=1000
0.001″ Chromel wire   Omega Engineering, Stamford, CT, USA SPCH-001-50 unsheathed, themocouple wire, 50ft spool now called Chromega
0.003″ Constatan wire   Omega Engineering, Stamford, CT, USA SPCI-003-50 unsheathed, themocouple wire, 50 ft spool
fine forceps   Fine Science Tools, USA 91150-20 Dumont Inox #5
universal microscope boom stand   Nikon 76135 or 90430 most brands or types of boom stand will work for this use
mechanical micromanipulator   Narishige M-152 three-axis direct-drive coarse micromanipulator
hydraulic micromanipulator   Narishige MO-203 now available as MMO-203, three movable axis type
needle holder   Leica Microsystems 11520145 set of 3
single instrument holder   Leica Microsystems 11520142  
double instrument holder   Leica Microsystems 11520143  
mechanical micromanipulator   Leica Microsystems 39430001 post mount,1 prob holder, RH Model 430001
joystick mech. micromanipulator   Leica Microsystems 11520137  
Leica DM IRB   Leica Microsystems   inverted microscope
Vibraplane isolation table   Kinetic System, Boston, MA, USA 1200 series ours is model 1201-02-12
Ringcubator   self manufactured see reference 19   reference 19, requires updated controller listed below
programable temperature controller   Instrumart.com Fuji Electric PXR3 replaces the retired PXV3 temperature controller
Nikon Diaphot TMD   Nikon Instruments, Inc.   inverted microscope, circa 1980
Nikon SMZ-10 binocular dissecting   Nikon Instruments, Inc.   other dissecting microscopes will work

References

  1. Zheng, J., Buxbaum, R. E., Heidemann, S. R. Measurements of growth cone adhesion to culture surfaces by micromanipulation. J Cell Biol. 127, 2049-2060 (1994).
  2. Chada, S., Lamoureux, P., Buxbaum, R. E., Heidemann, S. R. Cytomechanics of neurite outgrowth from chick brain neurons. J Cell Sci. 110, 1179-1186 (1997).
  3. Heidemann, S. R., Lamoureux, P., Buxbaum, R. E., Haynes, L. W. . The Neuron in Tissue Culture. , 105-119 (1999).
  4. Lamoureux, P., Altun-Gultekin, Z. F., Lin, C., Wagner, J. A., Heidemann, S. R. Rac is required for growth cone function but not neurite assembly. J Cell Sci. 110, 635-641 (1997).
  5. Lamoureux, P., Ruthel, G., Buxbaum, R. E., Heidemann, S. R. Mechanical tension can specify axonal fate in hippocampal neurons. J Cell Biol. 159, 499-508 (2002).
  6. Lamoureux, P., Heidemann, S. R., Martzke, N. R., Miller, K. E. Growth and elongation within and along the axon. Dev Neurobiol. 70, 135-149 (2010).
  7. Dennerll, T. J., Lamoureux, P., Buxbaum, R. E., Heidemann, S. R. The cytomechanics of axonal elongation and retraction. J Cell Biol. 109, 3073-3083 (1989).
  8. Heidemann, S. R., Kaech, S., Buxbaum, R. E., Matus, A. Direct observations of the mechanical behaviors of the cytoskeleton in living fibroblasts. J Cell Biol. 145, 109-122 (1999).
  9. Yoneda, M. Force Exerted by a Single Cilium of Mytilus-Edulis .1. Journal of Experimental Biology. 37, (1960).
  10. Bray, D. Mechanical Tension Produced by Nerve-Cells in Tissue-Culture. Journal of Cell Science. 37, 391-410 (1979).
  11. Pfister, B. J., Iwata, A., Meaney, D. F., Smith, D. H. Extreme stretch growth of integrated axons. J Neurosci. 24, 7978-7983 (2004).
  12. Fass, J. N., Odde, D. J. Tensile force-dependent neurite elicitation via anti-beta1 integrin antibody-coated magnetic beads. Biophys J. 85, 623-636 (2003).
  13. Yang, S., Saif, M. T. A. Microfabricated Force Sensors and Their Applications in the Study of Cell Mechanical Response. Exp Mech. 49, 135-151 (2009).
  14. Bernal, R., Melo, F., Pullarkat, P. A. Drag Force as a Tool to Test the Active Mechanical Response of PC12 Neurites. Biophysical Journal. 98, 515-523 (2010).
  15. Lamoureux, P., Buxbaum, R. E., Heidemann, S. R. Direct evidence that growth cones pull. Nature. 340, 159-162 (1989).
  16. Heidemann, S. R., Lamoureux, P., Buxbaum, R. E. Growth cone behavior and production of traction force. J Cell Biol. 111, 1949-1957 (1990).
  17. O’Toole, M., Lamoureux, P., Miller, K. E. A physical model of axonal elongation: force, viscosity, and adhesions govern the mode of outgrowth. Biophys J. 94, 2610-2620 (2008).
  18. Bray, D. Axonal growth in response to experimentally applied mechanical tension. Dev Biol. 102, 379-389 (1984).
  19. Heidemann, S. R., Lamoureux, P., Ngo, K., Reynolds, M., Buxbaum, R. E. Open-dish incubator for live cell imaging with an inverted microscope. Biotechniques. 35, 708-708 (2003).
check_url/fr/2509?article_type=t

Play Video

Citer Cet Article
Lamoureux, P., Heidemann, S., Miller, K. E. Mechanical Manipulation of Neurons to Control Axonal Development. J. Vis. Exp. (50), e2509, doi:10.3791/2509 (2011).

View Video