Summary

मौखिक Biofilms की व्यापक बायोकेमिकल, स्ट्रक्चरल और transcriptome मूल्यांकन के लिए एक विश्लेषणात्मक उपकरण बॉक्स अपरिवर्तक Streptococci द्वारा मध्यस्थता

Published: January 25, 2011
doi:

Summary

दांत सतहों पर गठित Biofilms अत्यधिक जटिल और लगातार सहज और exogenous पर्यावरणीय चुनौतियों, जो अपनी वास्तुकला मिलाना फिजियोलॉजी और transcriptome को उजागर कर रहे हैं. हम एक Toolbox विकसित करने के लिए संरचना, संरचनात्मक संगठन और मौखिक biofilms के जीन की अभिव्यक्ति, जो biofilm अनुसंधान के अन्य क्षेत्रों के लिए अनुकूलित किया जा सकता है की जांच.

Abstract

Biofilms are highly dynamic, organized and structured communities of microbial cells enmeshed in an extracellular matrix of variable density and composition 1, 2. In general, biofilms develop from initial microbial attachment on a surface followed by formation of cell clusters (or microcolonies) and further development and stabilization of the microcolonies, which occur in a complex extracellular matrix. The majority of biofilm matrices harbor exopolysaccharides (EPS), and dental biofilms are no exception; especially those associated with caries disease, which are mostly mediated by mutans streptococci 3. The EPS are synthesized by microorganisms (S. mutans, a key contributor) by means of extracellular enzymes, such as glucosyltransferases using sucrose primarily as substrate 3.

Studies of biofilms formed on tooth surfaces are particularly challenging owing to their constant exposure to environmental challenges associated with complex diet-host-microbial interactions occurring in the oral cavity. Better understanding of the dynamic changes of the structural organization and composition of the matrix, physiology and transcriptome/proteome profile of biofilm-cells in response to these complex interactions would further advance the current knowledge of how oral biofilms modulate pathogenicity. Therefore, we have developed an analytical tool-box to facilitate biofilm analysis at structural, biochemical and molecular levels by combining commonly available and novel techniques with custom-made software for data analysis. Standard analytical (colorimetric assays, RT-qPCR and microarrays) and novel fluorescence techniques (for simultaneous labeling of bacteria and EPS) were integrated with specific software for data analysis to address the complex nature of oral biofilm research.

The tool-box is comprised of 4 distinct but interconnected steps (Figure 1): 1) Bioassays, 2) Raw Data Input, 3) Data Processing, and 4) Data Analysis. We used our in vitro biofilm model and specific experimental conditions to demonstrate the usefulness and flexibility of the tool-box. The biofilm model is simple, reproducible and multiple replicates of a single experiment can be done simultaneously 4, 5. Moreover, it allows temporal evaluation, inclusion of various microbial species 5 and assessment of the effects of distinct experimental conditions (e.g. treatments 6; comparison of knockout mutants vs. parental strain 5; carbohydrates availability 7). Here, we describe two specific components of the tool-box, including (i) new software for microarray data mining/organization (MDV) and fluorescence imaging analysis (DUOSTAT), and (ii) in situ EPS-labeling. We also provide an experimental case showing how the tool-box can assist with biofilms analysis, data organization, integration and interpretation.

Protocol

1. कदम 1 – bioassays biofilm विधि दांत किराए के रूप में hydroxyapatite की डिस्क (हेक्टेयर) का उपयोग करता है (क्लार्कसन क्रोमैटोग्राफी उत्पाद, Inc, दक्षिण Williamsport, फिलीस्तीनी अथॉरिटी, संयुक्त राज्य अमेरिका, सतह क्षेत्र</sup…

Discussion

इस प्रस्तुति में, हम विश्लेषणात्मक उपकरण बॉक्स (ईपीएस / बैक्टीरिया इमेजिंग और माइक्रोएरे डेटा / खनन प्रसंस्करण), और विभिन्न प्रणाली में एकीकृत assays के बहुमुखी प्रतिभा और उपयोगिता के दो महत्वपूर्ण घटक का …

Divulgations

The authors have nothing to disclose.

Acknowledgements

लेखकों MDV के विकास के लिए डॉ. गैरी Xie और हरबर्ट ली धन्यवाद देना चाहूंगा. हम भी डीआरएस धन्यवाद. सिमोन ड्यूआर्टे, रेमिरो Murata, जॅ-Gyu Jeon, जैकलिन Abranches, और अपने उपकरण बॉक्स के विश्लेषणात्मक घटकों के लिए तकनीकी और वैज्ञानिक योगदान के लिए सुश्री स्टेसी ग्रेगोइरे. इस अध्ययन USPHS अनुसंधान अनुदान DE018023 द्वारा दंत चिकित्सा और craniofacial रिसर्च राष्ट्रीय संस्थान से हिस्से में समर्थित किया गया था.

Materials

Material Name Type Company Catalogue Number Comment
Syto 9   Invitrogen S34854  
Syto 60   Invitrogen S11342  
Dextran conjugated alexa 647   Invitrogen D22914  
Olympus FV1000 two-photon laser scanning microscope   Olympus, Tokyo, Japan    

References

  1. Costerton, J. W., Stewart, P. S., Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science. 284, 1318-1322 (1999).
  2. Branda, S. S., Vik, S., Friedman, L., Kolter, R. Biofilms: the matrix revisited. Trends Microbiol. 13, 20-26 (2005).
  3. Leme, P. a. e. s., Koo, A. F., Bellato, H., Bedi, C. M., G, J. A. C. u. r. y. The role of sucrose in cariogenic dental biofilm formation–new insight. J Dent Res. 85, 878-887 (2006).
  4. Koo, H., Schobel, B. D., Scott-Annem, K., Watson, G., Bowen, W. H., Cury, J. A., Rosalen, P. L., Park, Y. K. Apigenin and tt-farnesol with fluoride effects on S. mutans biofilms and dental caries. J Dent Res. 84, 1016-1020 (2005).
  5. Koo, H., Xiao, J., Klein, M. I., Jeon, J. G. Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms. J Bacteriol. 192, 3024-3032 (2010).
  6. Jeon, J. G., Klein, M. I., Xiao, J., Gregoire, S., Rosalen, P. L., Koo, H. Influences of naturally occurring agents in combination with fluoride on gene expression and structural organization of Streptococcus mutans in biofilms. BMC Microbiol. 9, 228-228 (2009).
  7. Klein, M. I., DeBaz, L., Agidi, S., Lee, H., Xie, G., Lin, A. H. M., Hamaker, B. R., Lemos, J. A., Koo, H. Dynamics of Streptococcus mutans transcriptome in response to starch and sucrose during biofilm development. PLoS ONE. , 0013478-0013478 (2010).
  8. Lemos, J. A., Abranches, J., Koo, H., Marquis, R. E., Burne, R. A. Protocols to Study the Physiology of Oral Biofilms. Methods Mol Biol. 666, 87-102 (2010).
  9. Koo, H., Hayacibara, M. F., Schobel, B. D., Cury, J. A., Rosalen, P. L., Park, Y. K., Vacca-Smith, A. M., Bowen, W. H. Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. J Antimicrob Chemother. 52, 782-789 (2003).
  10. Koo, H., Seils, J., Abranches, J., Burne, R. A., Bowen, W. H., Quivey, R. G. Influence of apigenin on gtf gene expression in Streptococcus mutans UA159. Antimicrob. Agents Chemother. 50, 542-546 (2006).
  11. Klein, M. I., Duarte, S., Xiao, J., Mitra, S., Foster, T. H., Koo, H. Structural and molecular basis of the role of starch and sucrose in Streptococcus mutans biofilm development. Appl Environ Microbiol. 75, 837-841 (2009).
  12. Cury, J. A., Koo, H. Extraction and purification of total RNA from Streptococcus mutans biofilms. Anal Biochem. 365, 208-214 (2007).
  13. Xiao, J., Koo, H. Structural organization and dynamics of exopolysaccharide matrix and microcolonies formation by Streptococcus mutans in biofilms. J Appl Microbiol. 108, 2103-2113 (2010).
  14. Thurnheer, T., Gmür, R., Shapiro, S., Guggenheim, B. Mass transport of macromolecules within an in vitro model of supragingival plaque. Appl Environ Microbiol. 69, 1702-1709 (2003).
  15. Chalmers, N. I., Palmer, R. J. J. r., Du-Thumm, L., Sullivan, R., Shi, W., Kolenbrander, P. E. Use of quantum dot luminescent probes to achieve single-cell resolution of human oral bacteria in biofilms. Appl Environ Microbiol. 73, 630-636 (2007).
  16. Deng, D. M., Hoogenkamp, M. A., Ten Cate, J. M. >., Crielaard, W. Novel metabolic activity indicator in Streptococcus mutans biofilms. J Microbiol Methods. 77, 67-71 (2009).
check_url/fr/2512?article_type=t

Play Video

Citer Cet Article
Klein, M. I., Xiao, J., Heydorn, A., Koo, H. An Analytical Tool-box for Comprehensive Biochemical, Structural and Transcriptome Evaluation of Oral Biofilms Mediated by Mutans Streptococci. J. Vis. Exp. (47), e2512, doi:10.3791/2512 (2011).

View Video