Summary

一个简单的悬滴细胞生成三维球体文化协议

Published: May 06, 2011
doi:

Summary

我们描述了一个简单快速的方法,生成三维组织类似的球体和其潜在的应用,量化,在细胞间的相互作用的差异。

Abstract

壁刚性基板上单层培养的细胞与细胞间的凝聚力和基质细胞黏附的研究在历史上一直执行。然而,一个组织内的细胞,通常装在一个紧密排列的组织肿块,在其中的细胞建立亲密的联系,许多附近的邻居和细胞外基质成分。因此,化学环境和一个三维组织内的细胞所经历的物理力量比单层培养细胞生长经历的根本不同。这已经显示出显着影响细胞的形态和信号。已制定了几种方法生成的三维细胞培养物,包括细胞胶原凝胶1或生物材料支架2封装。这样的方法,虽然有用,但不复述亲密直接的细胞与细胞间的粘附结构,在正常组织中发现。相反,他们更加紧密地近似的文化系统中,单个细胞松散地分散在一个3D小梁ECM产品。在这里,我们描述了一个简单的方法中,细胞被放置在悬滴培养和生理条件下培养,直到它们形成真正的3D球体中,细胞直接接触与相互之间以及与细胞外基质成分。该方法无需专门的设备,可适应包括在非常小的数量,阐明对细胞与细胞或细胞- ECM相互作用的影响可能感兴趣的任何生物制剂此外。该方法也可用于共培养两个(或更多),不同的细胞群,以澄清在指定细胞之间的空间关系中的作用的细胞 – 细胞或细胞外基质的相互作用。细胞与细胞间的凝聚力和细胞- ECM的粘附,胚胎发育,肿瘤的间质细胞相互作用恶性侵袭,促进伤口愈合,组织工程的应用研究的基石。这个简单的方法将提供一个样组织产生的生物力学性能的测量或细胞聚集在生理相关的模型的分子和生化分析的手段。

Protocol

1。单细胞悬液的制备于是单层贴壁细胞培养应增长到90%汇合,应当用PBS漂洗两次。排水良好后,加入2毫升,0.05%胰蛋白酶1毫米EDTA(100毫米板块),并在37 ° C,直到细胞分离。停止加入2 MLS的完全培养基,轻轻地用5毫升吸管磨碎的混合物,直至细胞悬浮液中的胰蛋白酶。细胞转移到15毫升锥形管。 添加在室温为5分钟40μL10 mg / ml的DNA酶股票和孵化。涡短暂离心5分钟,在200的XG。 <…

Discussion

有研究表明,在三维环境(3D)培养细胞产生不同的细胞形态和信号时相比,一个刚性的二维(2D)文化系统 9 。例如,成纤维细胞填充的胶原凝胶表明,成纤维细胞在三维形态是相当独特的2D 10,11指出的。同样,三维培养可诱发乳腺上皮细胞分化的组织特异性。已被用来区分正常和恶性细胞三维培养系统,并已表明支持转化细胞的表型正常的回归,给予适当的刺激12,13。?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

笔者要感谢东轩佳博士为技术援助。在这篇文章中出现的一些图像在与美国普林斯顿大学分子生物学系,马康斯坦伯格博士合作。笔者还要感谢部和国防部前列腺癌研究计划(赠款PC – 030482 PC – 991552)的慷慨支持美国国立癌症研究所/美国国立卫生研究院(批R01CA118755)。

Materials

  • automatic cell counter (BioRad TC10)
  • shaking water bath with CO2 gable cover Model 3540 (Lab-line)

References

  1. Cukierman, E., Pankov, R., Yamada, K. M. Cell interactions with three-dimensional matrices. Curr Opin Cell Biol. 14, 633-639 (2002).
  2. Nelson, C. M., Bissell, M. J. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol. 22, 287-309 (2006).
  3. Davis, G. S., Phillips, H. M., Steinberg, M. S. Germ-layer surface tensions and &quot;tissue affinities&quot; in Rana pipiens gastrulae: quantitative measurements. Dev Biol. 192, 630-644 (1997).
  4. Schotz, E. M. Quantitative differences in tissue surface tension influence zebrafish germ layer positioning. HFSP J. 2, 42-56 (2008).
  5. Jia, D., Dajusta, D., Foty, R. A. Tissue surface tensions guide in vitro self-assembly of rodent pancreatic islet cells. Dev Dyn. 236, 2039-2049 (2007).
  6. Foty, R. A., Steinberg, M. S. The differential adhesion hypothesis: a direct evaluation. Dev Biol. 278, 255-263 (2005).
  7. Li, D. Expression of the casein kinase 2 subunits in Chinese hamster ovary and 3T3 L1 cells provides information on the role of the enzyme in cell proliferation and the cell cycle. J Biol Chem. 274, 32988-32996 (1999).
  8. Foty, R. A., Pfleger, C. M., Forgacs, G., Steinberg, M. S. Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development. 122, 1611-1620 (1996).
  9. Wendt, D., Riboldi, S. A., Cioffi, M., Martin, I. Potential and bottlenecks of bioreactors in 3D cell culture and tissue manufacturing. Adv Mater. 21, 3352-3367 (2009).
  10. Berry, D. P., Harding, K. G., Stanton, M. R., Jasani, B., Ehrlich, H. P. Human wound contraction: collagen organization, fibroblasts, and myofibroblasts. Plast Reconstr Surg. 102, 124-131 (1998).
  11. Grinnell, F. Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol. 13, 264-269 (2003).
  12. Wang, F. Reciprocal interactions between beta1-integrin and epidermal growth factor receptor in three-dimensional basement membrane breast cultures: a different perspective in epithelial biology. Proc Natl Acad Sci U S A. 95, 14821-14826 (1998).
  13. Weaver, V. M. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol. 137, 231-245 (1997).
  14. Boudreau, N., Werb, Z., Bissell, M. J. Suppression of apoptosis by basement membrane requires three- dimensional tissue organization and withdrawal from the cell cycle. Proc Natl Acad Sci U S A. 93, 3509-3513 (1996).
  15. Croix, B., Rak, J. W., Kapitain, S., Sheehan, C., Graham, C. H., Kerbel, R. S. Reversal by hyaluronidase of adhesion-dependent multicellular drug resistance in mammary carcinoma cells. J. Nat. Cancer Inst. 88, 1285-1296 (1996).
  16. Bissell, M. J. Tissue structure, nuclear organization, and gene expression in normal and malignant breast. Cancer Res. 59, 1757-1763 (1999).
  17. Marrero, B., Messina, J. L., Heller, R. Generation of a tumor spheroid in a microgravity environment as a 3D model of melanoma. In Vitro Cell Dev Biol Anim. 45, 523-534 (2009).
  18. Napolitano, A. P. Scaffold-free three-dimensional cell culture utilizing micromolded nonadhesive hydrogels. Biotechniques. 43, 494-496 (2007).
  19. Tibbitt, M. W., Anseth, K. S. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng. 103, 655-663 (2009).
check_url/fr/2720?article_type=t

Play Video

Citer Cet Article
Foty, R. A Simple Hanging Drop Cell Culture Protocol for Generation of 3D Spheroids. J. Vis. Exp. (51), e2720, doi:10.3791/2720 (2011).

View Video