Summary

Imaging Neuronal Svar på Slice Varer af Vomeronasal Organ udtryk for en genetisk kodet Calcium Sensor

Published: December 06, 2011
doi:

Summary

The vomeronasal organ (VNO) detects intraspecies chemical signals that convey social and reproductive information. We have performed Ca2+ imaging experiments using transgenic mice expressing G-CaMP2 in VNO tissue. This approach allows us to analyze the complicated response patterns of the vomeronasal neurons to large numbers of pheromone stimuli.

Abstract

Den vomeronasal organ (VNO) registrerer chemosensory signaler, der bærer information om de sociale, seksuelle og reproduktive status for individer inden for samme art 1,2. Disse intraspecies signaler, feromoner, samt signaler fra nogle rovdyr 3, aktivere vomeronasal sensoriske neuroner (VSNs) med høje niveauer af specificitet og sensitivitet 4. Mindst tre forskellige familier af G-protein koblede receptorer, V1R, V2R og FPR 5-14, er udtrykt i VNO neuroner at mægle påvisning af chemosensory tidskoder. For at forstå hvordan feromon oplysninger er kodet af VNO, er det kritisk at analysere respons profiler af de enkelte VSNs til forskellige stimuli og identificere de specifikke receptorer, der formidler disse svar.

Den neuroepithelia af VNO er ​​indesluttet i et par vomer knogler. Den semi-blind rørformet struktur VNO har en åben ende (vomeronasal kanal) tilslutning tilnæsehulen. VSNs udvide deres dendritter til lumen del af VNO, hvor feromon signaler er i kontakt med de receptorer udtrykt på dendritiske drejeknapper. Cellen organer VSNs formularen pseudo-stratificerede lag med V1R og V2R til udtryk i den apikale og basale lag henholdsvis 6-8. Adskillige teknikker er blevet brugt til at overvåge svar VSNs på sensoriske stimuli 4,12,15-19. Blandt disse teknikker tilbyder akut skive forberedelse flere fordele. Først, i forhold til dissocieret VSNs 3,17, slice præparater opretholde neuroner i deres eget morfologi og dendritter af cellerne forbliver relativt intakt. For det andet, cellen organer VSNs er let tilgængelige i koronale bid af VNO at tillade elektrofysiologi undersøgelser og billedbehandling eksperimenter i forhold til hele epitel og hel-mount præparater 12,20. For det tredje kan denne metode kombineres med molekylær kloning teknikker, der giver receptor identifikation.

Sensorisk stimulation udløser stærke Ca 2 + tilstrømning i VSNs, der er betegnende for receptor-aktivering 4,21. Vi dermed udvikle transgene mus, der udtrykker G-CAMP2 i olfaktoriske sensoriske neuroner, herunder VSNs 15,22. Følsomheden og den genetiske karakteren af sonden i høj grad lette Ca 2 + billeddannelse eksperimenter. Denne metode har fjernet farvestoffet loading proces, der anvendes i tidligere undersøgelser 4,21. Vi har også ansat en ligand delivery system, der muliggør anvendelsen af ​​forskellige stimuli til VNO skiver. Kombinationen af ​​de to teknikker giver os mulighed for at overvåge flere neuroner på samme tid som reaktion på et stort antal stimuli. Endelig har vi etableret et semi-automatiseret analyse rørledning til at hjælpe billedbehandling.

Protocol

1. Løsning forberedelse Forbered 10X R1, R2 10X og 10X R3 løsninger i henhold til tabellen. R1 Kemikalier MW (g / mol) mM (1X) 10X bestand (g / L) NaCl 58,44 125 73,05 KCl 74,55 2,5 1,86 MgCl 2 1 M lager 1 10 ml CaCl 2 · 2H 2 O <t…

Discussion

The majority of the vomeronasal receptors (VRs) remain as orphan receptors since their discovery by Dulac and Axel 5. The pheromone ligands for these chemosensory receptors and their roles in mediating animal behaviors are not well understood. Until now, only one pair of ligand/receptor, the ESP1 peptide and its cognate receptor, Vmn2r116 (V2Rp5), has been identified and shown to convey specific social information 19,23. Another receptor, V1rb2, has been shown to respond to 2-heptanone, which presum…

Divulgations

The authors have nothing to disclose.

Acknowledgements

We thank Andrea Moran together with members of Lab Animal Service Facility (LASF) at Stowers Institute for their excellent support on animal husbandry and technical services. This work is supported by funding from Stowers Institute and the NIH (NIDCD 008003) to CRY. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute on Deafness and Other Communication Disorders or the National Institutes of Health. U.S. patent pending for the tetO-G-CaMP2 mice for Stowers Institute, CRY and LM.

References

  1. Birch, M. C. . Pheromones. , (1974).
  2. Wyatt, T. D. Pheromones and animal behaviour : communication by smell and taste. , (2003).
  3. Papes, F., Logan, D. W., Stowers, L. The vomeronasal organ mediates interspecies defensive behaviors through detection of protein pheromone homologs. Cell. 141, 692-703 (2010).
  4. Leinders-Zufall, T. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature. 405, 792-796 (2000).
  5. Dulac, C., Axel, R. A novel family of genes encoding putative pheromone receptors in mammals. Cell. 83, 195-206 (1995).
  6. Herrada, G., Dulac, C. A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell. 90, 763-773 (1997).
  7. Matsunami, H., Buck, L. B. A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell. 90, 775-784 (1997).
  8. Ryba, N. J., Tirindelli, R. A new multigene family of putative pheromone receptors. Neuron. 19, 371-379 (1997).
  9. Pantages, E., Dulac, C. A novel family of candidate pheromone receptors in mammals. Neuron. 28, 835-845 (2000).
  10. Zhang, X., Rodriguez, I., Mombaerts, P., Firestein, S. Odorant and vomeronasal receptor genes in two mouse genome assemblies. Genomics. 83, 802-811 (2004).
  11. Liberles, S. D. Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. Proc. Natl. Acad. Sci. U.S.A. 106, 9842-9847 (2009).
  12. Riviere, S., Challet, L., Fluegge, D., Spehr, M., Rodriguez, I. Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature. 459, 574-577 (2009).
  13. Yang, H., Shi, P., Zhang, Y. P., Zhang, J. Composition and evolution of the V2r vomeronasal receptor gene repertoire in mice and rats. Genomics. 86, 306-315 (2005).
  14. Rodriguez, I., Punta, D. e. l., Rothman, K., Ishii, A., T, ., Mombaerts, P. Multiple new and isolated families within the mouse superfamily of V1r vomeronasal receptors. Nat. Neurosci. 5, 134-140 (2002).
  15. He, J., Ma, L., Kim, S., Nakai, J., Yu, C. R. Encoding gender and individual information in the mouse vomeronasal organ. Science. 320, 535-538 (2008).
  16. Holy, T. E., Dulac, C., Meister, M. Responses of vomeronasal neurons to natural stimuli. Science. 289, 1569-1572 (2000).
  17. Chamero, P. Identification of protein pheromones that promote aggressive behaviour. Nature. 450, 899-902 (2007).
  18. Leinders-Zufall, T., Ishii, T., Mombaerts, P., Zufall, F., Boehm, T. Structural requirements for the activation of vomeronasal sensory neurons by MHC peptides. Nat. Neurosci. 12, 1551-1558 (2009).
  19. Kimoto, H., Haga, S., Sato, K., Touhara, K. Sex-specific peptides from exocrine glands stimulate mouse vomeronasal sensory neurons. Nature. 437, 898-901 (2005).
  20. Holekamp, T. F., Turaga, D., Holy, T. E. Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy. Neuron. 57, 661-672 (2008).
  21. Leinders-Zufall, T. MHC class I peptides as chemosensory signals in the vomeronasal organ. Science. 306, 1033-1037 (2004).
  22. He, J. Distinct signals conveyed by pheromone concentrations to the mouse vomeronasal organ. J. Neurosci. 30, 7473-7483 (2010).
  23. Haga, S. The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature. 466, 118-122 (2010).
  24. Boschat, C. Pheromone detection mediated by a V1r vomeronasal receptor. Nat. Neurosci. 5, 1261-1262 (2002).
  25. Hendel, T. Fluorescence changes of genetic calcium indicators and OGB-1 correlated with neural activity and calcium in vivo and in. 28, 7399-7411 (2008).
  26. Pologruto, T. A., Yasuda, R., Svoboda, K. Monitoring neural activity and [Ca2+] with genetically encoded Ca2+ indicators. J. Neurosci. 24, 9572-9579 (2004).
  27. Jayaraman, V., Laurent, G. Evaluating a genetically encoded optical sensor of neural activity using electrophysiology in intact adult fruit flies. Front Neural Circuits. 1 (3), (2007).
  28. Tian, L. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods. 6, 875-881 (2009).
check_url/fr/3404?article_type=t

Play Video

Citer Cet Article
Ma, L., Haga-Yamanaka, S., Yu, Q. E., Qiu, Q., Kim, S., Yu, C. R. Imaging Neuronal Responses in Slice Preparations of Vomeronasal Organ Expressing a Genetically Encoded Calcium Sensor. J. Vis. Exp. (58), e3404, doi:10.3791/3404 (2011).

View Video