Summary

プルダウンカルモジュリン結合タンパク質の

Published: January 23, 2012
doi:

Summary

カルモジュリン(CaM)プルダウンアッセイは、様々なタンパク質とカルモジュリンの相互作用を調査するために効果的な方法です。このメソッドは、CAM -結合タンパク質の効率的かつ特定の分析のためのCaM -セファロースビーズを使用しています。これは、細胞機能のCAM信号を探索するための重要なツールが用意されています。

Abstract

カルシウム(Ca 2 +)は、さまざまなメカニズムを通じて細胞機能の調節に重要なイオンで ​​す。多くのCa 2 +のシグナリングは、カルモジュリン(CaM)1,2として知られているカルシウム結合タンパク質によって媒介される。 CAMは、アポトーシス、代謝、平滑筋収縮、シナプス可塑性、神経の成長、炎症と免疫応答を含むほぼすべての細胞プロセス、内の複数のレベルで関与している。タンパク質の数は、CAMとの相互作用を介してこれらの経路を調節するのに役立ちます。これらの相互作用の多くは、Ca 2にバインドされたときに明らかに異なっているCAMのコンフォメーション、+(のCa 2 + – CaMの)としてのCa 2 + -フリー状態(ApoCaM)3とは対照的に依存する。

ほとんどの標的タンパク質は、Ca 2 + – CaMのをバインドしながら、特定のタンパク質だけApoCaMに結合する。ニューロ4、ニューログラニン(呉)5、および特定のミオシンを含む彼らのIQ -ドメインを介して、いくつかのバインドCAM、 <sup> 6。これらのタンパク質はそれぞれ、前シナプス機能7、シナプス機能8、および筋収縮9の重要な役割を果たすことが示されている。結合し、Ca 2 +の存在下または存在下でCAMをリリースする+能力は、それらの機能に極めて重要である。対照的に、多くのタンパク質は唯一のCa 2 + – CaMの結合し、それらの活性化のため、このバインディングを必要とする。例としては、ミオシン軽鎖キナーゼ10のCa 2 + /カルモジュリン依存性キナーゼ(CaMKs)11とホスファターゼ(例えばカルシニューリン)12、及び直接的および下流効果14のバリエーションがスペクトリンキナーゼ13を 、含まれています。

細胞機能に対するこれらのタンパク質の効果は、通常のCa 2 +依存的にCAMに結合する能力に依存しています。例えば、我々は、シナプス機能とどのように異なる突然変異は、この結合に影響を与えるのNG – CaMの結合の妥当性をテストした。我々は、GFPタグ付き伍CONを生成のCa 2 +依存的にCAMをバインドするために呉の能力を変更するようなIQ -ドメイン内の特定の変異を持つ構造体。これらの異なる突然変異の研究は、シナプス機能8,15に関与する重要なプロセスに私たちに偉大な洞察力を与えた。しかし、このような研究で、それは変異タンパク質が予想されるのCaMへの結合を変更していることを証明するために不可欠です。

ここで、我々は、例としてCaMKIIとngを使用して、Ca 2 +の存在下または非存在下でCAMに結合するタンパク質の能力をテストするための手法を提案する。このメソッドは、CaMとプルダウンアッセイと呼ばれるアフィニティークロマトグラフィーの形です。それは、CaMと+この結合に対するCa 2 +の影響に結合するタンパク質をテストするためのCaM -セファロースビーズを使用しています。それは、効率的なかなり多くの時間であり、カラムクロマトグラフィーおよび他のアッセイの相対少ない蛋白質を必要とします。完全に、これはでているのCa 2 + /カルモジュリンのシグナル伝達やタンパク質を探索するために貴重なツールを提供します。CAMとteract。

Protocol

ホモジネートで始まる手続きの基本的な回路図は図1を参照してください。細胞抽出物の作成からCAM -結合タンパク質の溶出に要する時間は約6〜7時間です。 1。組織の準備目的の組換えタンパク質を発現するプラスミドを含有するウイルスと器官型海馬スライス(この例では、緑色蛍光タンパク質(GFP)タグ付きng)を注入し、組織が一晩タンパク質を発現するこ?…

Discussion

提供するプロトコルは、CAM -結合蛋白質のCa 2 + -依存性を調査するようにCAM -セファロースビーズを利用しています。多くのタンパク質は、Ca 2 +依存的にカルモジュリンを結合する。これらの相互作用は、多くのシグナル伝達経路におけるカルモジュリン結合タンパク質およびそれらの重要な役割の数は与えられた非常に重要です。このプロトコルでは、CAM -セファロースビー?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

著者は、このプロトコルを最適化する上で彼女の助けでティファニーチェリーに感謝したいと思います。この作品は、国立老化研究所(AG032320)だけでなく、健康なウィスコンシン州を進めることによって資金を供給された。

Materials

Product Company Catalogue number Notes
Calmodulin-Sepharose beads GE Healthcare 17-0529-01  
Anti-CamKII alpha Sigma-Aldrich C6974  
Anti-neurogranin Millipore 07-425  
Gel Loading Pipet Tips Fisher 02-707-138 Use for aspiration of supernatants
Microcentrifuge tubes (2.0 mL) Fisher 05-408-146 Use for all steps involving calmodulin-sepharose beads

References

  1. Vincenzi, F. F. Calmodulin in the regulation of intracellular calcium. Proc. West Pharmacol Soc. 22, 289-294 (1979).
  2. Cheung, W. Y. Calmodulin plays a pivotal role in cellular regulation. Science. 207, 19-27 (1980).
  3. Zhang, M., Tanaka, T., Ikura, M. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nat. Struct. Biol. 2, 758-767 (1995).
  4. Alexander, K. A., Wakim, B. T., Doyle, G. S., Walsh, K. A., Storm, D. R. Identification and characterization of the calmodulin-binding domain of neuromodulin, a neurospecific calmodulin-binding protein. J. Biol. Chem. 263, 7544-7549 (1988).
  5. Huang, K. P., Huang, F. L., Chen, H. C. Characterization of a 7.5-kDa protein kinase C substrate (RC3 protein, neurogranin) from rat brain. Arch. Biochem. Biophys. 305, 570-580 (1993).
  6. Bahler, M., Rhoads, A. Calmodulin signaling via the IQ motif. FEBS Lett. 513, 107-113 (2002).
  7. Routtenberg, A. Protein kinase C activation leading to protein F1 phosphorylation may regulate synaptic plasticity by presynaptic terminal growth. Behav. Neural. Biol. 44, 186-200 (1985).
  8. Zhong, L., Cherry, T., Bies, C. E., Florence, M. A., Gerges, N. Z. Neurogranin enhances synaptic strength through its interaction with calmodulin. EMBO J. 28, 3027-3039 (2009).
  9. Needham, D. M. Myosin and adenosinetriphosphate in relation to muscle contraction. Biochim. Biophys. Acta. 4, 42-49 (1950).
  10. Hathaway, D. R., Adelstein, R. S. Human platelet myosin light chain kinase requires the calcium-binding protein calmodulin for activity. Proc. Natl. Acad. Sci. U.S.A. 76, 1653-1657 (1979).
  11. Fukunaga, K., Yamamoto, H., Matsui, K., Higashi, K., Miyamoto, E. Purification and characterization of a Ca2+- and calmodulin-dependent protein kinase from rat brain. J. Neurochem. 39, 1607-1617 (1982).
  12. Yang, S. D., Tallant, E. A., Cheung, W. Y. Calcineurin is a calmodulin-dependent protein phosphatase. Biochem. Biophys. Res. Commun. 106, 1419-1425 (1982).
  13. Huestis, W. H., Nelson, M. J., Ferrell, J. E. J. Calmodulin-dependent spectrin kinase activity in human erythrocytes. Prog. Clin. Biol. Res. 56, 137-155 (1981).
  14. Yamniuk, A. P., Vogel, H. J. Calmodulin’s flexibility allows for promiscuity in its interactions with target proteins and peptides. Mol. Biotechnol. 27, 33-57 (2004).
  15. Zhong, L., Kaleka, K. S., Gerges, N. Z. Neurogranin phosphorylation fine-tunes long-term potentiation. Eur. J. Neurosci. 33, 244-250 (2011).
check_url/fr/3502?article_type=t

Play Video

Citer Cet Article
Kaleka, K. S., Petersen, A. N., Florence, M. A., Gerges, N. Z. Pull-down of Calmodulin-binding Proteins. J. Vis. Exp. (59), e3502, doi:10.3791/3502 (2012).

View Video