Summary

Storstilet Registrering af neuroner ved Flytbare Silicon Probes at opføre sig Gnavere

Published: March 04, 2012
doi:

Summary

Vi beskriver metoder til storstilet registrering af flere enkelte enheder og lokale felt potentiale i at opføre gnavere med silicium sonder. Drive fabrikation, probe tilknytning til drevet og sonde implanterings processer er illustreret i tilstrækkelige oplysninger til let replikation.

Abstract

En stor udfordring i neurovidenskab linker adfærd til fælles aktivitet af neurale forsamlinger. Forståelse af input-output relationer af neuroner og kredsløb kræver metoder med den rumlige selektivitet og tidsmæssige opløsning, der passer til mekanistisk analyse af neurale ensembler i at opføre sig dyret, dvs optagelse af repræsentativt store prøver af isolerede enkelte neuroner. Ensemble overvågning af neuronal aktivitet har udviklet sig markant i det seneste årti i både små og store brained dyr, herunder forsøgspersoner 1-11. Multiple-site-optagelse med silicium-baserede enheder er særligt effektive på grund af deres skalerbarhed, lille volumen og geometriske udformning.

Her beskriver vi metoder til registrering af flere enkelte neuroner og lokale felt potentiale i at opføre gnavere, ved hjælp af kommercielt tilgængelige mikrobearbejdet silicium sonder med skræddersyede tilbehørskomponenter. Der er to grundlæggende muligheder feller er koblet silicium sonder til forforstærkere: printkort og fleksible kabler. Probe forsyningsselskaber ( http://www.neuronexustech.com/ , http://www.sbmicrosystems.com/ , http://www.acreo.se/ ) normalt giver det sammenbindende service og levere prober bundet til printplader eller fleksible ledninger. Her beskriver vi implantation af en 4-skaft, 32-site probe bundet til en fleksibel polyimid kabel, og monteret på en bevægelig mikrodrev. Hvert trin af proben præparatet er mikrodrev konstruktion og operation er illustreret, så at slutbrugeren kan let replikere processen.

Protocol

1. Byggeriet af Microdrive Alle drev er fremstillet af de samme elementer: en bevægelig del, som bærer elektrode og en fast del, som er forankret til kraniet. En ideel mikrodrev tillader glat, men længe nok vandring elektroden i flere små trin, er robust nok til at forhindre utilsigtet bevægelse af elektroden, let at manipulere af eksperimentatoren uden at interferere med dyrets adfærd, lille i størrelse og let i vægt. Som et resultat af disse konkurrerende krav. Forskellige drev passe…

Discussion

Denne film illustrerer implantation proceduren for silicium sonder til kroniske store optagelser i opfører rotten. Kritiske skridt til at sikre kvalitet optagelser af neuronal aktivitet skyldes skrøbeligheden af ​​både biologisk (hjernevæv) og tekniske (silicium sonde) materialer. Særlig omhu bør tages under håndtering af proben for at undgå kontakt af halsene med nogen afstand "hård" overflade (for eksempel ville skafterne bryde, hvis man forsøgte at implantere dem i hjernen uden at fjerne dura)…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Marie Curie International Outgoing Fellowship (Europæiske Unions FP/2007-2013 tilskudsaftalerne # 221834 og 254780), JD McDonnell Foundation, NSF Grant SBE 0542013, National Institutes of Health Grant NS034994, National Institute of Mental Health Grant MH5467 og Howard Hughes Medical Institute (Janelia Farm Research Campus tilskud).

Materials

Name Type Company Catalog Number Comments
Silicon probe Buzsaki32, 4 shanks x 8 sites. Packaging: flexible polyamide cable Material NeuroNexus Probe: buzsaki32
Packaging: HC32
Recording probe
Round Brass Screw, 00-90 x 1/2 Round Brass Screws Material JIMorris R0090B500 Drive part
Brass Hex Nut, 00-90 Material JIMorris N0090B Drive part
Brass C260 Strip, ASTM-B36
Thickness: 0.025″, Length: 12″, Width: 1/2″
Material Small Parts B000FMYU72 Drive part
Connector Header, pitch 2mm, male, single row, straigt, 36 positions Material Digikey 2163S-36-ND Drive part
2-part Sylgard silicon Elastomer Material World Precision Instruments SYLG184 To extra-insulate the probe
Decon Contrad 70 Liquid Detergent Reagent Fisher Scientific 04-355
Decon Laboratories
No.:1002
To clean the recording sites
Impedance Conditioning Module Equipment FHC Inc. 55-70-0 Impedance meter
niPOD – 32 channels Equipment Neuronexus niPOD -32 Impedance meter
Grip Cement Industrial Grade Material Caulk Dentsply 675571 (powder)
675572 (solvent)
Grip cement
1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (‘DiI’; DiIC18(3)) Reagent Invitrogen D282 To stain the probe track in the brain
Stainless Steel Machine Screw, Binding Head, Slotted Drive, #00-90, 1/8″ Material Small Parts MX-0090-02B Ground and reference screws
Magnet wire, 20G, nylon-polyurethane coating, MW80 Material Small Parts B000IJYRP2 Ground and reference wire
Stainless Steel Machine Screw, Binding Head Slotted Drive, #000-120, 1/16″ Material Small Parts MX-000120-01B Anchor screws
N-3 All purpose Flux Liquid Reagent La-Co (Markal) 23512 Allows to solder stainless-steel
MicroGrid Precision Expanded Copper Material Dexmet 3 CU6-050 FA Copper mesh for on-head Faraday cage
C&B-METABOND Quick! Cement System – Dentin Activator Material Parkell S380  
C&B-METABOND Quick! Cement System – Dental cement Material Parkell S380  
Sharp point tungsten needle and holder Tool Roboz Surgical instruments RS-6064 and RS-6061 To make the hook to lift the dura
Carbide Bur HP 1/4 Tool Henry Schein 9990013  
Paraffin (Granules) Material Fisher Scientific P31-500  
Mineral Oil, Light (NF/FCC) Material Fisher Scientific O121-1  
GC ELECTRONICS 10-114 2-Part Epoxy Adhesive Material Newark 00Z416  
Type 1 LITZ 21 AWG 40/36 Red Single Polyurethane-Nylon (MW80-C) TO 0.041″+/-0.002″ OD Material New England Wire Technologies Corporation N28-36E-400-2 To make the cable between the headstage and the amplifier
32-channel Very Large Scale Integration headstage, 20x gain Equipment Plexon HST/32V-G20 Headstage

References

  1. Buzsáki, G. High-frequency network oscillation in the hippocampus. Science. 256, 1025-1027 (1992).
  2. Wilson, M. A., McNaughton, B. L. Dynamics of the hippocampal ensemble code for space. Science. 261, 1055-1058 (1993).
  3. Buzsáki, G. Large-scale recording of neuronal ensembles. Nat. Neurosci. 7, 446-451 (2004).
  4. Buzsáki, G. Visualizing Large-Scale Patterns of Activity in the Brain: Optical and Electrical Signals. Society for Neuroscience. , (2004).
  5. Nicolelis, M. A. L. . Methods for Neural Ensemble Recordings. , (2008).
  6. Hatsopoulos, N. G., Donoghue, J. P. The science of neural interface systems. Annu. Rev. Neurosci. 32, 249-266 (2009).
  7. Battaglia, F. P. The Lantern: an ultra-light micro-drive for multi-tetrode recordings in mice and other small animals. J. Neurosci. Methods. 178, 291-300 (2009).
  8. Kloosterman, F., Davidson, T. J. Micro-drive Array for Chronic in vivo Recording: Drive Fabrication. J. Vis. Exp. 26, e1094-e1094 (2009).
  9. Nguyen, D. P., Layton, S. P. Micro-drive Array for Chronic in vivo Recording: Tetrode Assembly. J. Vis. Exp. (26), e1098-e1098 (2009).
  10. Haiss, F., Butovas, S., Schwarz, C. A miniaturized chronic microelectrode drive for awake behaving head restrained mice and rats. J. Neurosci. Methods. 187, 67-72 (2010).
  11. Cerf, M. On-line, voluntary control of human temporal lobe neurons. Nature. 467, 1104-1108 (2010).
  12. Kohn, D. F. Anesthesia and Analgesia in Laboratory Animals. American College of Laboratory Animal Medicine. series, (1997).
  13. Schjetnan, A. G. P., Luczak, A. Recording Large-scale Neuronal Ensembles with Silicon Probes in the Anesthetized Rat. J. Vis. Exp. (56), e3282-e3282 (2011).
  14. Paxinos, G., Watson, C. The Rat Brain. Stereotaxic Coordinates. , (1982).
  15. Harris, K. D. Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J. Neurophysiol. 84, 401-414 (2000).
  16. Hazan, L., Zugaro, M., Buzsáki, G. Klusters, NeuroScope, NDManager: a Free Software Suite for Neurophysiological Data Processing and Visualization. J. Neurosci. Methods. 155, 207-216 (2006).
  17. Kipke, D. R. Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J. Neurosci. 28, 11830-11838 (2008).
  18. Csicsvari, J. Massively parallel recording of unit and local field potentials with silicon-based electrodes. J. Neurophysiol. 90, 1314-1323 (2003).
  19. Sodagar, A. M., Wise, K. D., Najafi, K. A fully integrated mixed-signal neural processor for implantable multichannel cortical recording. IEEE Trans. Biomed. Eng. 54, 1075-1088 (2007).
  20. O’Connor, D. H., Huber, D., Svoboda, K. Reverse engineering the mouse brain. Nature. 461, 923-929 (2009).
  21. Boyden, E. S. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263-1268 (2005).
  22. Zhang, F. Circuit-breakers: optical technologies for probing neural signals and systems. Nat. Rev. Neurosci. 8, 577-581 (2007).
  23. Royer, S. Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal. Eur. J. Neurosci. 31, 2279-2291 (2010).
check_url/fr/3568?article_type=t

Play Video

Citer Cet Article
Vandecasteele, M., M., S., Royer, S., Belluscio, M., Berényi, A., Diba, K., Fujisawa, S., Grosmark, A., Mao, D., Mizuseki, K., Patel, J., Stark, E., Sullivan, D., Watson, B., Buzsáki, G. Large-scale Recording of Neurons by Movable Silicon Probes in Behaving Rodents. J. Vis. Exp. (61), e3568, doi:10.3791/3568 (2012).

View Video