Summary

GIRK चैनल की Modulators की पहचान के लिए एक फ्लोरोसेंट जांच परख

Published: April 24, 2012
doi:

Summary

दवाओं के कि प्रोटीन gated जी आवक सही करनेवाला कश्मीर साथ बातचीत की पहचान के लिए एक वास्तविक समय स्क्रीनिंग प्रक्रिया<sup> +</sup> चैनल (GIRK) में वर्णित है. परख झिल्ली क्षमता संवेदनशील फ्लोरोसेंट GIRK चैनल गतिविधि को मापने के रंगों का इस्तेमाल करता है. इस तकनीक को सेल लाइनों की एक संख्या पर इस्तेमाल के लिए अनुकूलनीय है.

Abstract

G protein-gated inward rectifier K+ (GIRK) channels function as cellular mediators of a wide range of hormones and neurotransmitters and are expressed in the brain, heart, skeletal muscle and endocrine tissue1,2. GIRK channels become activated following the binding of ligands (neurotransmitters, hormones, drugs, etc.) to their plasma membrane-bound, G protein-coupled receptors (GPCRs). This binding causes the stimulation of G proteins (Gi and Go) which subsequently bind to and activate the GIRK channel. Once opened the GIRK channel allows the movement of K+ out of the cell causing the resting membrane potential to become more negative. As a consequence, GIRK channel activation in neurons decreases spontaneous action potential formation and inhibits the release of excitatory neurotransmitters. In the heart, activation of the GIRK channel inhibits pacemaker activity thereby slowing the heart rate.

GIRK channels represent novel targets for the development of new therapeutic agents for the treatment neuropathic pain, drug addiction, cardiac arrhythmias and other disorders3. However, the pharmacology of these channels remains largely unexplored. Although a number of drugs including anti-arrhythmic agents, antipsychotic drugs and antidepressants block the GIRK channel, this inhibition is not selective and occurs at relatively high drug concentrations3.

Here, we describe a real-time screening assay for identifying new modulators of GIRK channels. In this assay, neuronal AtT20 cells, expressing GIRK channels, are loaded with membrane potential-sensitive fluorescent dyes such as bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)] or HLB 021-152 (Figure 1). The dye molecules become strongly fluorescent following uptake into the cells (Figure 1). Treatment of the cells with GPCR ligands stimulates the GIRK channels to open. The resulting K+ efflux out of the cell causes the membrane potential to become more negative and the fluorescent signal to decrease (Figure 1). Thus, drugs that modulate K+ efflux through the GIRK channel can be assayed using a fluorescent plate reader. Unlike other ion channel screening assays, such atomic absorption spectrometry4 or radiotracer analysis5, the GIRK channel fluorescent assay provides a fast, real-time and inexpensive screening procedure.

Protocol

1. प्रकोष्ठों के तैयार है Dulbecco संशोधित ईगल मध्यम (DMEM) 10% और 5% सीओ 2 के एक humidified माहौल घोड़े सीरम में 37 ° C पर संस्कृतियों को बनाए रखने के साथ पूरक में पिट्यूटरी AtT20 कोशिकाओं के आगे बढ़ें. संस्कृति कोशिका?…

Discussion

जबकि संभावित संवेदनशील झिल्ली फ्लोरोसेंट रंजक के लिए दवाओं है कि आयन चैनल मिलाना 9,10 की पहचान के लिए इस्तेमाल किया गया है, इस neuronal GIRK चैनल दवाओं की खोज के लिए अपने आवेदन की पहली रिपोर्ट है. GIRK चैनल फ्लोर?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

यह काम अमेरिका के सार्वजनिक स्वास्थ्य सेवा पुरस्कार एन एस 071,530 द्वारा समर्थित किया गया था.

Materials

Name of the reagent Company Catalogue number
DMEM CellGro 10-013
Horse serum Invitrogen 16050-114
96-well plates Corning 3603
Poly-l-lysine Sigma-Aldrich P4707
Somatostatin Sigma-Aldrich S9129
Carbachol Sigma-Aldrich C4382
HLB 021-152 AnaSpec 89300
Versette automated liquid handler ThermoFisher 650-01
Synergy2 fluorescent plate reader Biotek  
Gen5 analysis software Biotek  

Table 1. Table of specific reagents and equipment.

References

  1. Hibino, H. Inward rectifying potassium channels: their structure, function and physiological roles. Physiol. Rev. 90, 291-366 (2010).
  2. Lusscher, C., Slesinger, P. A. Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat. Rev. Neurosci. 11, 301-315 (2010).
  3. Kobayashi, T., Ikeda, K. G protein-activated inwardly rectifying potassium channels as potential therapeutic targets. Cur. Pharm. Des. 12, 4513-4523 (2006).
  4. Terstappen, G. C. Functional analysis of native and recombinant ion channels using a high-capacity nonradioactive rubidium efflux assay. Anal. Biochem. 272, 149-155 (1999).
  5. Cheng, C. S. A high-throughput HERG potassium channel function assay: an old assay with a new look. Drug Dev. Ind. Pharm. 28, 177-191 (2002).
  6. Zhang, J. -. H., Chung, T. D. Y., Oldenburg, K. R. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67-73 (1999).
  7. Jin, W., Lu, Z. A novel high-affinity inhibitor for inward-rectifier K+ channels. Biochem. 37, 13291-13299 (1998).
  8. Inomata, N. Anti-arrhythmic agents act differently on the activation phase of the Ach-response in guinea pig atrial myocytes. Br. J. Pharmacol. 108, 111-116 (1993).
  9. Tang, W. Development and evaluation of high throughput functional assay methods for HERG potassium channel. J. Biomol. Screen. 6, 325-331 (2001).
  10. Wolff, C., Fuks, B., Chatelain, P. Comparative study of membrane potential-sensitive fluorescent probes and their use in ion channel screening assays. J. Biomol. Screen. 8, 533-513 (2003).
  11. Niswender, C. M., Johnson, K. A., Luo, Q., Avala, J. E., Kim, C., Conn, P. J., Weaver, C. D. A novel assay of Gi/o-linked G protein-coupled receptor coupling to potassium channels provides new insights into the pharmacology of group III metabotropic glutamate receptors. Mol. Pharm. 73, 1213-1224 (2008).
  12. Bridal, T. R., Marquilis, M., Wang, X., Donio, M., Sorota, S. Comparison of human Ether-á-go-go related gene screening assays based on IonWorks Quattro and thallium flux. Assay Drug Dev. Technol. 8, 755-765 (2010).
check_url/fr/3850?article_type=t

Play Video

Citer Cet Article
Vazquez, M., Dunn, C. A., Walsh, K. B. A Fluorescent Screening Assay for Identifying Modulators of GIRK Channels. J. Vis. Exp. (62), e3850, doi:10.3791/3850 (2012).

View Video