Summary

收获小鼠肺泡巨噬细胞和评价聚酸酐纳米粒子诱导的细胞活化

Published: June 08, 2012
doi:

Summary

在此,我们描述了小鼠肺泡巨噬细胞,居住在肺先天免疫细胞,并检查其激活,共培养酸酐纳米收获的协议。

Abstract

可生物降解的纳米粒子已经出现作为一个通用平台的设计和实施新鼻内疫苗对呼吸道传染病。具体来说,酸酐纳米脂肪癸二酸(SA),芳香1,6 -双(P-羧基苯氧)正己烷(CPH),或双亲1,8 -双(P-羧基苯氧)-3,6 – dioxaoctane组成(CPTEG)显示独特的体积和表面侵蚀动力学1,2和可利用缓慢释放功能的生物大分子(如蛋白抗原,免疫球蛋白等) 在体内 3,4,5。这些纳米粒子也具有内在的辅助活动,使他们6,7,8疫苗交付平台的一个很好的选择。

为了阐明机制激活先天免疫后鼻腔粘膜接种,必须评估的分子和细胞反应的抗原P怨恨细胞(APC)负责启动免疫反应。树突状细胞是进行气管中发现的主要装甲运兵车,而在肺实质9,10,11(AMɸ)肺泡巨噬细胞为主。 AMɸ是非常有效地清除病原微生物和细胞碎片12,13肺部。此外,这种细胞类型发挥宝贵的作用在运输微生物抗原的淋巴结,这是一个重要的第一步启动适应性免疫反应9。 AMɸ也表达水平升高的先天模式识别和清道夫受体,分泌促炎介质,和总理幼稚T细胞12,14。一个人口相对纯的AMɸ(例如,大于80%),可以很容易地获得通过肺灌洗在实验室中研究。从免疫动物AMɸ收获的居民提供了一个代表性的表型的巨噬细胞,将encounter的粒子在体内的疫苗。在此,我们描述了从小鼠到收获和文化AMɸ使用的协议和检查酸酐纳米粒子在体外治疗后的巨噬细胞的激活型。

Protocol

1。鼠标采用肺灌洗收获(AMɸ)肺泡巨噬细胞穿白大褂,一次性手套,和适当的保护眼睛,如适当的个人防护装备(PPE)。 开始收获前准备完整AMɸ(cAMɸ)培养基。新增2.5青霉素/链霉素(笔/链球菌)解决方案,250β-巯基乙醇微升(巯基乙醇)和25热灭活胎牛血清(FBS),毫升222.25 Dulbelcco的修改鹰培养基(DMEM培养基)毫升毫升。过滤消毒cAMɸ介质在真空条件下使用0.2微米的孔大小瓶…

Discussion

酸酐纳米疫苗平台显示效果时,给予单剂量疗法5滴鼻。在此疫苗交付平台引起的肺部测量驻地吞噬细胞群的激活,允许评估其潜在的能力,最终促进适应性免疫反应。

具体来说,从肺灌洗液中收获肺泡巨噬细胞和不同配方的纳米粒子治疗提供了不同的粒子化学能力的见解,激活巨噬细胞,导致抗原提呈6,8。此外, 在体外研究中,这些都是用于?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

作者想感谢来自衣阿华州立大学流式细胞设施美国陆军医学研究和装备司令部(格兰特W81XWH-09-1-0386和W81XWH-10-1-0806号)的财政支持和肖恩·里格比博士他的专家技术援助。

Materials

Name of the reagent Company Catalog number Comments
      cAM Media
DMEM Cellgro 15-013-CV  
50 mM 2-mercaptoethanol Sigma M3148-25ML  
Penicillin/Streptomycin 10,000 μg/ mL Solution Cellgro 30-002-CI  
Fetal Bovine Serum Atlanta Biologicals S11150  
      FACS Buffer
Sodium chloride Fisher Scientific S671-500  
Sodium phosphate Fisher Scientific MK7868500  
Potassium chloride Fisher Scientific P217500  
Potassium phosphate Fisher Scientific P288-200  
BSA (Bovine Serum Albumin) Sigma A7888  
Sodium Azide Sigma S2002  
      Antibodies
Rat IgG Sigma I4341  
Anti-Ms CD16/32 eBioscience 16-0161  
Anti-Ms MHC II haplotype I-A/I-E, clone M5/114.15.2, conjugated to fluorescein isothiocyanate (FITC) eBioscience 11-5321  
Anti-mouse CD86, clone GL-1, conjugated to allophycocyanin (APC)-Cy7 Biolegend 105030  
Anti-mouse CD40, clone 1C10, conjugated to APC eBioscience 17-0401  
Anti-mouse CD209, clone 5H10, conjugated to Biotin eBioscience 13-2091  
Anti-mouse CD11b, clone M1/70, conjugated to Alexa Fluor 700 eBioscience 56-0112  
Anti-mouse F4/80, clone BM8, conjugated to phycoerythrin (PE)-Cy7 eBioscience 25-4801  
PE-Texas red conjugated Streptavidin BD Biosciences 551487  
      Other Supplies and Reagents
Ethanol Fisher Scientific A405-20 Used as 70% (v/v)
Compressed CO2 Linweld 16000060  
1 mL Syringe BD Biosciences 309659  
Sovereign 3 ½” Fr Tom Catcatheter Kendall 703021  
Biosafety Cabinet NUAIRE Series 22  
Dissection Scissors Fisher 138082  
Forceps Roboz RS-8254  
PBS, 1X without calcium and magnesium Cellgro 21-040-CM  
15 mL Centrifuge Tubes with Screw Cap VWR International 21008-216  
Six-well Tissue Culture Treated Plates Costar 3516  
Plastic Tube Racks Nalgene 5970  
Cell Scraper 24 cm TPP 99002  
5 mL Polystyrene Round-Bottom Tube Falcon 352008  
Pipet-aid XL Drummond 4-000-105  
10, 5, and 2 mL Pipettes Fisher 13-675  
200 and 10 μL micropipettors Gilson Pipetman F123601  
200 and 10 μL pipette tips Fisher 02-707  
BD Stabilizing Fixative BD Biosciences 338036  
Isoton II Diluent Beckman-Coulter 8546719  
Zap-oglobin II Lytic Reagent Beckman-Coulter 7546138  
Coulter Counter Polystyrene Vials Beckman-Coulter 14310-684  
Test Tubes BD Biosciences 352008  
      Equipment
Refrigerated Centrifuge Labnet 50075040  
Humidified Incubator CO2 Nuaire Model Autoflow 8500  
FACSCanto Flow Cytometer BD Biosciences 338960  
Coulter Particle Counter Z1 Beckman-Coulter WS-Z1DUALPC  
Sonicator Liquid Processing Equipment with Microtip Misonix Model No. S-4000  

References

  1. Mallapragada, S. K., Narasimhan, B. Immunomodulatory biomaterials. Int. J. Pharm. 364, 265-271 (2008).
  2. Torres, M. P., Vogel, B. M., Narasimhan, B., Mallapragada, S. K. Synthesis and characterization of novel polyanhydrides with tailored erosion mechanisms. J. Biomed. Mater. Res. A. 76, 102-110 (2006).
  3. Lopac, S. K., Torres, M. P., Wilson-Welder, J. H., Wannemuehler, M. J., Narasimhan, B. Effect of polymer chemistry and fabrication method on protein release and stability from polyanhydride microspheres. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 91, 938-947 (2009).
  4. Torres, M. P., Determan, A. S., Anderson, G. L., Mallapragada, S. K., Narasimhan, B. Amphiphilic polyanhydrides for protein stabilization and release. Biomaterials. 28, 108-116 (2007).
  5. Ulery, B. D. Design of a Protective Single-Dose Intranasal Nanoparticle-Based Vaccine Platform for Respiratory Infectious Diseases. PLoS ONE. 6, e17642 (2011).
  6. Petersen, L. K., Xue, L., Wannemuehler, M. J., Rajan, K., Narasimhan, B. The simultaneous effect of polymer chemistry and device geometry on the in vitro activation of murine dendritic cells. Biomaterials. 30, 5131-5142 (2009).
  7. Petersen, L. K. Activation of innate immune responses in a pathogen-mimicking manner by amphiphilic polyanhydride nanoparticle adjuvants. Biomaterials. 32, 6815-6822 (2011).
  8. Torres, M. P. Polyanhydride microparticles enhance dendritic cell antigen presentation and activation. Acta. Biomater. 7, 2857-2864 (2011).
  9. Kirby, A. C., Coles, M. C., Kaye, P. M. Alveolar macrophages transport pathogens to lung draining lymph nodes. J. Immunol. 183, 1983-1989 (2009).
  10. Barletta, K. E. Leukocyte compartments in the mouse lung: Distinguishing between marginated, interstitial, and alveolar cells in response to injury. J. Immunol. Methods. , (2011).
  11. Rubins, J. B. Alveolar macrophages: wielding the double-edged sword of inflammation. Am. J. Respir. Crit. Care Med. 167, 103-104 (2003).
  12. Sun, K., Gan, Y., Metzger, D. W. Analysis of Murine Genetic Predisposition to Pneumococcal Infection Reveals a Critical Role of Alveolar Macrophages in Maintaining the Sterility of the Lower Respiratory Tract. Infect. Immun. 79, 1842-1847 (2011).
  13. Morimoto, K. Alveolar Macrophages that Phagocytose Apoptotic Neutrophils Produce Hepatocyte Growth Factor during Bacterial Pneumonia in Mice. Am. J. Respir. Cell Mol. Biol. 24, 608-615 (2001).
  14. Gordon, S., Taylor, P. R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5, 953-964 (2005).
  15. Ulery, B. D. Polymer chemistry influences monocytic uptake of polyanhydride nanospheres. Pharm. Res. 26, 683-690 (2009).
  16. Petersen, L. K., Sackett, C. K., Narasimhan, B. High-throughput analysis of protein stability in polyanhydride nanoparticles. Acta Biomater. 6, 3873-3881 (2010).
  17. Irvin, C. G., Bates, J. H. Measuring the lung function in the mouse: the challenge of size. Respir. Res. 4, 4 (2003).
check_url/fr/3883?article_type=t

Play Video

Citer Cet Article
Chavez-Santoscoy, A. V., Huntimer, L. M., Ramer-Tait, A. E., Wannemuehler, M., Narasimhan, B. Harvesting Murine Alveolar Macrophages and Evaluating Cellular Activation Induced by Polyanhydride Nanoparticles. J. Vis. Exp. (64), e3883, doi:10.3791/3883 (2012).

View Video