Summary

Modeling Colitis-Associated Cancer med Azoxymethane (AOM) og dextransulfat Natrium (DSS)

Published: September 11, 2012
doi:

Summary

Vi viser en protokol, hvor administration af genotoksisk stof azoxymethane (AOM) efterfulgt af tre cyklusser af det pro-inflammatoriske middel dextransulfat-natrium (DSS) hurtigt og konsekvent frembringer colontumorer hos mus med morfologiske og molekylære lighed med dem, der ses i human colitis -associeret cancer.

Abstract

Personer med inflammatorisk tarmsygdom (IBD), såsom Crohns sygdom (CD) eller colitis ulcerosa (UC) er i øget risiko for at udvikle kolorektal cancer (CRC) over raske personer. Denne risiko er proportional med varigheden og omfanget af sygdom, med en kumulativ incidens så høj som 30% hos individer med langvarige UC med udbredt colon engagement. 1 Colonic dysplasi i IBD og colitis associeret cancer (CAC) menes at udvikle sig som et resultat af gentagne cykler af epitelial-celle skade og reparation, mens disse celler bades i en kronisk inflammatorisk cytokin miljø. 2 Mens spontane og colitis-associerede cancere deler kvalitet er adenocarcinomer er sekvensen af de underliggende molekylære begivenheder menes at være anderledes. 3. Denne skelnen argumenterer behovet for specifikke dyremodeller for CAC.

Adskillige musemodeller øjeblikket findes for studiet af CAC. Dextransulfat Sodium (DSS), et middel med direkte toksiske virkninger på tyktarmsepitel, kan indgives i drikkevand til mus i flere cyklusser for at skabe en kronisk inflammatorisk tilstand. Med tilstrækkelig varighed, vil nogle af disse mus udvikler tumorer. Fire tumorudviklingen er fremskyndes i denne model hvis den gives i en pro-kræftfremkaldende indstilling. Disse omfatter mus med genetiske mutationer i tumorigenese pathways (APC, p53, MSH2), såvel som mus forbehandlet med genotoksiske midler (azoxymethane [AOM], 1,2-dimethylhydrazin [DMH]). Fem

Kombinationen af ​​DSS med AOM som en model for colitis associeret cancer har vundet popularitet for sin reproducerbarhed, styrke, lav pris, og brugervenlighed. Selv om de har en fælles mekanisme, der AOM vist sig at være mere potente og stabile i opløsning end DMH. Mens tumorudvikling hos andre modeller kræver almindeligvis flere måneder, mus injiceret med AOM og efterfølgende behandlet med DSS udvikle passende tumorer i ens lidt som 7-10 uger. 6, 7 Endelig AOM og DSS kan administreres til mus af alle genetiske baggrund (knock out, transgene osv.) uden krydsning til en specifik tumorigen stamme. Her viser vi en protokol for inflammation drevet colon tumorigenese i mus under anvendelse af en enkelt injektion af AOM efterfulgt af tre syv-dages cyklusser af DSS over en 10 ugers periode. Denne model fremkalder tumorer med histologiske og molekylære forandringer ligger tæt op ad dem, der forekommer i human CAC og giver en meget værdifuld model til undersøgelse af onkogenese og chemoprevention i denne sygdom. 8

Protocol

1. Colitis-associeret cancerinduktion Braklægning bure af køn og alder-matchede 6-8 uger gamle mus, der skal anvendes til forsøg og kontrol grupper. Mus kan individuelt mærket med hale markeringer eller øreclips. På dag 0, optage baseline vægt og injicere hver mus intraperitonealt (IP) med 10 mg / kg af AOM arbejdsopløsning (1 mg / ml i isotonisk saltvand, fortyndet fra 10 mg / ml stamopløsning i dH2O opbevares ved -20 grader C) . Baseret på erfaring, kan denne dosis justeres mellem 7-14 m…

Discussion

Behandling af mus med AOM og DSS hurtigt og effektivt modeller human colitis-associeret cancer. Hypoteser vedrørende arvelige faktorer, colitis-associerede cancere er let studeret med genetisk modificerede mus. 13, 16 Alternativt kan virkningen af farmakologiske mål i colitis-associeret cancer blive undersøgt ved anvendelse af vild-type mus.

Mens denne model er stærkt værdsat af dem interesseret i studiet af colontumor udvikling i fastsættelsen af ​​inflammation, findes …

Divulgations

The authors have nothing to disclose.

Acknowledgements

Dette arbejde blev finansieret delvist af DK089016 og L30 RR030244 (MAC), CA153036 (AS), og P30-DK52574 (til Washington University Digestive Diseases Research Core). AIT var en Howard Hughes Medical Institute Medical Research Training Fellow.

Materials

Name of the reagent Company Catalogue number Comments
C57BL/6J Mice Jackson Laboratory 000664  
Azoxymethane (AOM) Sigma Aldrich A5486-100MG Stock solution: dilute to 10 mg/ml in distilled water to be kept at -20 °C as 0.5 – 1 ml aliquots.
Working solution: dilute stock to 1 mg/ml in isotonic (0.9%) saline
Dextran Sulfate Sodium (DSS) TdB Consultancy DB001 MW 40 kDa (36-50 kDa preparations from other sources are acceptable; The same lot should be used for a single experiment)6
Coloview miniendoscopic system Karl Storz Multiple See Becker et al. for detailed explanation of equipment and setup.11
TPP Rapid FILTERMAX 500 ml Bottle-Filter, 0.22 μm PES Midwest Scientific TP99500 Any standard tissue culture filter is acceptable
Ethyl Alcohol 200 Proof ASC/USP Pharmaco-AAPER (or other) 11ACS200 Dilute to 70% in distilled water
Isoflurane, USP Butler Animal Health Supply 4029405 Place mouse in glass jar with gauze or a small cloth soaked in anesthetic
18G Straight Gavage Needle Braintree Scientific N-008  
Phosphate Buffered Saline (PBS) Sigma Aldrich P5493 Dilute to 1X (0.01 M) in distilled water
Cold Tray (Tissue Tek II Cold Plate) Fisher Scientific NC9491941 Store at -20 °C
ImageJ Software NIH (free download)   http://rsbweb.nih.gov/ij/
Formaldehyde (37%) Fisher Scientific F79-500 Dilute to 10% in PBS
BD Bacto Agar Fisher Scientific DF0140-01-0 Use hotplate to create 2% solution in distilled water
Miltex Eye Dressing Forceps MedPlus Inc. 18-780  
Miltex Eye Scissors MedPlus Inc. 18-1430 Curved points prevent damage to colon during opening.
Alcian Blue 8GX (powder) Sigma Aldrich A5268 Add 1 g powder to 100 ml 3% acetic acid (3 ml glacial acetic acid + 97 ml distilled water)
1 mL Tuberculin syringe with attached 26 G x 3/8 in intradermal bevel needle BD 305946 For injection of AOM

References

  1. Ekbom, A. Ulcerative colitis and colorectal cancer. A population-based study. N. Engl. J. Med. 323, 1228-1233 (1990).
  2. Terzic, J. Inflammation and colon cancer. Gastroenterology. 138, 2101-2114 (2010).
  3. Ullman, T. A., Itzkowitz, S. H. Intestinal inflammation and cancer. Gastroenterology. 140, 1807-1816 (2011).
  4. Okayasu, I. Dysplasia and carcinoma development in a repeated dextran sulfate sodium-induced colitis model. J. Gastroenterol. Hepatol. 17, 1078-1083 (2002).
  5. Kanneganti, M., Mino-Kenudson, M., Mizoguchi, E. Animal models of colitis-associated carcinogenesis. J. Biomed. Biotechnol. 342637, (2011).
  6. Neufert, C., Becker, C., Neurath, M. F. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nat. Protoc. 2, 1998-2004 (2007).
  7. Tanaka, T. A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci. 94, 965-973 (2003).
  8. De Robertis, M. The AOM/DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies. J. Carcinog. 10, 9 (2011).
  9. Wirtz, S. Chemically induced mouse models of intestinal inflammation. Nat. Protoc. 2, 541-546 (2007).
  10. Cooper, H. S. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest. 69, 238-249 (1993).
  11. Becker, C., Fantini, M. C., Neurath, M. F. High resolution colonoscopy in live mice. Nat. Protoc. 1, 2900-2904 (2006).
  12. Becker, C., Fantini, M. C., Wirtz, S., Nikolaev, A., Kiesslich, R., Lehr, H. A., Galle, P. R., Neurath, M. F. In vivo imaging of colitis and colon cancer development in mice using high resolution chromoendoscopy. Gut. 54, 950-954 (2005).
  13. Shaker, A. Epimorphin deletion protects mice from inflammation-induced colon carcinogenesis and alters stem cell niche myofibroblast secretion. J. Clin. Invest. 120, 2081-2093 (2010).
  14. Boivin, G. P. Pathology of mouse models of intestinal cancer: consensus report and recommendations. Gastroenterology. 124, 762-777 (2003).
  15. Cooper, H. S. Dysplasia and cancer in the dextran sulfate sodium mouse colitis model. Relevance to colitis-associated neoplasia in the human: a study of histopathology, B-catenin and p53 expression and the role of inflammation. Carcinogenesis. 21, 757-768 (2000).
  16. Yoshida, Y. The forkhead box M1 transcription factor contributes to the development and growth of mouse colorectal cancer. Gastroenterology. 132, 1420-1431 (2007).
  17. Suzuki, R. Strain differences in the susceptibility to azoxymethane and dextran sodium sulfate-induced colon carcinogenesis in mice. Carcinogenesis. 27, 162-169 (2006).
  18. Mahler, M. Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis. Am. J. Physiol. 274, 544-551 (1998).
  19. Nambiar, P. R. Preliminary analysis of azoxymethane induced colon tumors in inbred mice commonly used as transgenic/knockout progenitors. Int. J. Oncol. 22, 145-150 (2003).
  20. Tanaka, T. Colorectal carcinogenesis: Review of human and experimental animal studies. J Carcinog. 8, (2009).
  21. Ciorba, M. A. Induction of IDO-1 by immunostimulatory DNA limits severity of experimental colitis. J. Immunol. 184, 3907-3916 (2010).
  22. Kerr, T. A. Dextran sodium sulfate inhibition of real-time polymerase chain reaction amplification: A poly-A purification solution. Inflamm. Bowel Dis. 18, 344-348 (2012).
  23. Tang, Y. is required for resection-induced changes in apoptosis, proliferation, and members of the extrinsic cell death pathways. Gastroenterology. 126, 220-230 (2004).
check_url/fr/4100?article_type=t

Play Video

Citer Cet Article
Thaker, A. I., Shaker, A., Rao, M. S., Ciorba, M. A. Modeling Colitis-Associated Cancer with Azoxymethane (AOM) and Dextran Sulfate Sodium (DSS). J. Vis. Exp. (67), e4100, doi:10.3791/4100 (2012).

View Video