Summary

ثابت الطريقة النتوء الضغط التي تسيطر عليها لإعداد الحويصلات الدهن نانو الحجم

Published: June 22, 2012
doi:

Summary

يصف هذا بروتوكول طريقة قذف لإعداد الحويصلات الدهون من دون ميكرون الأحجام مع وجود درجة عالية من التجانس. هذا الأسلوب يستخدم نظام الضغط التي تسيطر عليها مع تسيطر عليها معدلات تدفق النيتروجين لإعداد الحويصلية. ودهن إعداد<sup> 1،2</sup>، سيتم تقديم قذف الحويصلية، وتوصيف حجم هنا.

Abstract

Liposomes are artificially prepared vesicles consisting of natural and synthetic phospholipids that are widely used as a cell membrane mimicking platform to study protein-protein and protein-lipid interactions3, monitor drug delivery4,5, and encapsulation4. Phospholipids naturally create curved lipid bilayers, distinguishing itself from a micelle.6 Liposomes are traditionally classified by size and number of bilayers, i.e. large unilamellar vesicles (LUVs), small unilamellar vesicles (SUVs) and multilamellar vesicles (MLVs)7. In particular, the preparation of homogeneous liposomes of various sizes is important for studying membrane curvature that plays a vital role in cell signaling, endo- and exocytosis, membrane fusion, and protein trafficking8. Several groups analyze how proteins are used to modulate processes that involve membrane curvature and thus prepare liposomes of diameters <100 – 400 nm to study their behavior on cell functions3. Others focus on liposome-drug encapsulation, studying liposomes as vehicles to carry and deliver a drug of interest9. Drug encapsulation can be achieved as reported during liposome formation9. Our extrusion step should not affect the encapsulated drug for two reasons, i.e. (1) drug encapsulation should be achieved prior to this step and (2) liposomes should retain their natural biophysical stability, securely carrying the drug in the aqueous core. These research goals further suggest the need for an optimized method to design stable sub-micron lipid vesicles.

Nonetheless, the current liposome preparation technologies (sonication10, freeze-and-thaw10, sedimentation) do not allow preparation of liposomes with highly curved surface (i.e. diameter <100 nm) with high consistency and efficiency10,5, which limits the biophysical studies of an emerging field of membrane curvature sensing. Herein, we present a robust preparation method for a variety of biologically relevant liposomes.

Manual extrusion using gas-tight syringes and polycarbonate membranes10,5 is a common practice but heterogeneity is often observed when using pore sizes <100 nm due to due to variability of manual pressure applied. We employed a constant pressure-controlled extrusion apparatus to prepare synthetic liposomes whose diameters range between 30 and 400 nm. Dynamic light scattering (DLS)10, electron microscopy11 and nanoparticle tracking analysis (NTA)12 were used to quantify the liposome sizes as described in our protocol, with commercial polystyrene (PS) beads used as a calibration standard. A near linear correlation was observed between the employed pore sizes and the experimentally determined liposomes, indicating high fidelity of our pressure-controlled liposome preparation method. Further, we have shown that this lipid vesicle preparation method is generally applicable, independent of various liposome sizes. Lastly, we have also demonstrated in a time course study that these prepared liposomes were stable for up to 16 hours. A representative nano-sized liposome preparation protocol is demonstrated below.

Protocol

1. الحويصلية التحضير استرداد زجاج مل 20 قارورة مع غطاء تفلون مبطنة. تنظيف الأواني الزجاجية وجميع المحاقن مع الكلوروفورم قبل استخدامها لمنع التلوث. نقل 100 ميكرولتر ?…

Discussion

باستخدام Liposofast Avestin LF-50 الطارد، أثبتنا كيف صغيرة الحجم، يتم إعداد الليبوزومات الاصطناعية من خلال نظام الضغط التي تسيطر عليها. من المهم أن نلاحظ أن الحويصلات الصفاحات تشكل عفويا بعد ترطيب الحويصلية، مما قد يؤدي إلى إنتاج أصغر النانوية. وهذه الحويصلات الصغيرة الصفاحا?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

وأيد هذا العمل من قبل معهد هوارد هيوز الطبي (HHMI) التعاونية جائزة الابتكار. وأيد LAM بواسطة الإشارات الخلوية وتنظيم المعهد الوطني للصحة تدريب منحة (T32 GM008759) وروث المعاهد الوطنية للصحة L. كيرشتاين ما قبل الدكتوراه زميل (CA165349-01). نود أن نشكر الأستاذ الدكتور مايكل Stowell (CU بولدر)، والبروفيسور ريس دوغلاس وروب البروفيسور فيليبس (كالتك) للتعليق عليها لا تقدر بثمن.

Materials

Name of the reagent Company Catalogue number Comments
Chloroform Sigma-Aldrich 02432-25ML 95% stabilizers
High Grade Methanol Sigma-Aldrich 179337-4L  
Liposofast LF-50 Extruder Avestin, Inc.    
Phospholipids Avanti Polar Lipids    
Polycarbonate Pores Avestin, Inc.   25 mm diameter
Drain discs PE Avestin, Inc. 230600 25 mm diameter

References

  1. Connor, J., Bucana, C., Fidler, I. J., Schroit, A. J. Differentiation-dependent expression of phosphatidylserine in mammalian plasma membranes: quantitative assessment of outer-leaflet lipid by prothrombinase complex formation. Proc. Natl. Acad. Sci. U.S.A. 86, 3184-3188 (1989).
  2. Smith, S. A., Morrissey, J. H. Rapid and efficient incorporation of tissue factor into liposomes. J. Thromb. Haemost. 2, 1155-1162 (2004).
  3. Hui, E., Johnson, C. P., Yao, J., Dunning, F. M., Chapman, E. R. Synaptotagmin-mediated bending of the target membrane is a critical step in Ca(2+)-regulated fusion. Cell. 138, 709-721 (2009).
  4. Loughrey, H. C., Choi, L. S., Cullis, P. R., Bally, M. B. Optimized procedures for the coupling of proteins to liposomes. J. Immunol. Methods. 132, 25-35 (1990).
  5. Mui, B., Chow, L., Hope, M. J. Extrusion technique to generate liposomes of defined size. Methods Enzymol. 367, 3-14 (2003).
  6. Gruner, S. M., Cullis, P. R., Hope, M. J., Tilcock, C. P. Lipid polymorphism: the molecular basis of nonbilayer phases. Annu. Rev. Biophys. Biophys. Chem. 14, 211-238 (1985).
  7. Guven, A., Ortiz, M., Constanti, M., O’Sullivan, C. K. Rapid and efficient method for the size separation of homogeneous fluorescein-encapsulating liposomes. J. Liposome. Res. 19, 148-154 (2009).
  8. Zimmerberg, J., Kozlov, M. How proteins produce cellular membrane curvature. Nature Reviews Molecular Cell Biology. 7, 9-19 (2006).
  9. Chonn, A., Cullis, P. R. Recent advances in liposomal drug-delivery systems. Curr. Opin. Biotechnol. 6, 698-708 (1995).
  10. Mayer, L. D., Hope, M. J., Cullis, P. R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim. Biophys. Acta. 858, 161-168 (1986).
  11. Matsuoka, K., Schekman, R. The use of liposomes to study COPII- and COPI-coated vesicle formation and membrane protein sorting. Methods. 20, 417-428 (2001).
  12. Dragovic, R. A., Gardiner, C., Brooks, A. S., Tannetta, D. S., Ferguson, D., Hole, P., Carr, B., Redman, C., Harris, A. L., Dobson, P. J., Harrison, P., Sargent, I. L. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine. , (2011).
  13. Hunter, D. G., Frisken, B. J. Effect of extrusion pressure and lipid properties on the size and polydispersity of lipid vesicles. Biophys J. 74, 2996-3002 (1998).

Play Video

Citer Cet Article
Morton, L. A., Saludes, J. P., Yin, H. Constant Pressure-controlled Extrusion Method for the Preparation of Nano-sized Lipid Vesicles. J. Vis. Exp. (64), e4151, doi:10.3791/4151 (2012).

View Video