Summary

Omfattende Profilering af Dopamin forordning i substantia nigra og ventrale tegmentale område

Published: August 10, 2012
doi:

Summary

Dopamin tydeligt reguleres i midthjernen kerner, der indeholder cellelegemer og dendritter af dopamin neuroner. Her beskriver vi en dissektion og håndtering af prøver for at maksimere resultater, og således konklusioner og indsigt på dopamin regulering i midthjernen kerner i substantia nigra (SN) og ventrale tegmentale område (VTA) hos gnavere.

Abstract

Dopamin er en kraftigt undersøgt neurotransmitter i CNS. Faktisk har sit engagement i bevægelsesaktivitet og belønning-adfærd fremmes fem årtier af undersøgelse af de molekylære mangler forbundet med dopamin regulering. De fleste af disse undersøgelser af dopamin regulering i hjernen fokus på det molekylære grundlag for sin regulering i de terminale felt regionerne i de nigrostriatale og mesoaccumbens veje, striatum og nucleus accumbens. Desuden har sådanne undersøgelser koncentreret på en analyse af dopamin væv indhold med normalisering til kun vådt væv vægt. Undersøgelse af proteiner, der regulerer dopamin, såsom tyrosinhydroxylase (TH)-protein, TH phosphorylering, dopamin-transporteren (DAT), og vesikulært monoamintransporterfunktion 2 (VMAT2) protein ofte ikke omfatter analyse af dopamin væv indhold i den samme prøve. Evnen til at analysere både dopamin væv indhold og regulerer proteiner (herunder post-translational ændringer) giver ikke kun iboende magt til at fortolke forholdet mellem dopamin med protein niveau og funktion af TH, DAT eller VMAT2, men udvider også prøve økonomi. Dette udmønter sig i lavere omkostninger, og alligevel giver indsigt i den molekylære regulering af dopamin i stort set alle paradigme af efterforskerne valg.

Vi fokuserer analyserne i midthjernen. Selv om SN og VTA typisk er forsømt i de fleste studier af dopamin forordning, er disse kerner let dissekeret med praksis. En omfattende udlæsning af dopamin væv indhold og TH, DAT eller VMAT2 kan udføres. Der er spirende litteratur om virkningen af dopamin funktion i SN og VTA på adfærd, og impingements af eksogene stoffer eller sygdomsprocesser deri 1-5. Endvidere er forbindelser, såsom vækstfaktorer har en dybtgående virkning på dopamin og dopamin-regulerende proteiner, at en forholdsvis større udstrækning i SN eller VTA <sup> 6-8. Derfor er denne metode præsenteres for henvisning til laboratorier, der ønsker at udvide deres henvendelser om, hvordan specifikke behandlinger modulere adfærd og dopamin regulering. Her er en multi-trins fremgangsmåde præsenteres i de analyser af dopamin væv indhold, protein niveauer af TH, DAT eller VMAT2 og TH phosphorylering af substantia nigra og VTA fra gnaver midthjernen. Analysen af ​​TH fosforylering kan give betydelige indsigt i ikke blot, hvordan TH aktivitet er reguleret, men også de signalleringskaskader ramt i somatodendritisk kerner i et givent paradigme.

Vi vil illustrere dissektion teknikken for at adskille de to kerner, og prøven behandling af dissekerede væv, der producerer en profil afslørede molekylære mekanismer af dopamin regulering in vivo og er specifikke for hver kerner (figur 1).

Protocol

1. Dissection På et leje af våd is, køle en gnaverhjerne matrix (koronale sektioner adskilt 1 mm fra hinanden), en petriskål indeholdende 5 barbermaskiner, og en # 11 skalpel. I en separat beholder mærket anbringes 2 ml størrelse mikrocentrifugeglas i tøris. Investigator vil vælge den metode eutanasi. Vi har reproducerbare resultater foretager en meget kort anæstesi med isofluran, Ideelt set, bør anvendes en fordamper der. Men, hvis sådanne ikke foreligger, bruger vi et stort batteri kruk…

Discussion

Som skitseret i figur 1, bør fremgangsmåderne beskrevet ovenfor giver flere udlæsninger af dopamin og dens regulering proteiner TH, DAT og VMAT2 fra en prøve af SN eller VTA opnået fra enten rotte eller mus. Igen, fordelene ved at gennemføre denne protokol er, at investigator kan få operativt matchede udlæsninger af, hvordan dopamin reguleres in vivo under stort set alle eksperimentel paradigme, og derved betydelige eksperimentelle ressourcer spare ved at reducere antallet af dyr, der kræves i enhver e…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Finansieringen af dette arbejde, og som citeret 2,10, blev givet, dels ved en forskningsbevilling priser til MF Salvatore fra American Federation for Aging Research, The Edward P. Stiles Trust Fund og Biomedical Research Foundation of Northwest Louisiana, og BS Pruett fra Ike Muslow Predoctoral Fellowship, LSU Health Sciences Center-Shreveport.

Materials

HPLC system:

The basic system consists of a Shimadzu LC10-ADvp HPLC pump, a Waters WISP 717 automatic sample injector, a 250 X 4.4 mm 5 micron Spherosorb ODS-1 C18 reverse-phase column (Waters), a Bioanalytical Systems (BAS) TL12 dual glassy carbon electrode, two BAS LC4B electrochemical detectors, and a Waters Empower 2 data collection and integration system.

The column is maintained at 30-45°C (BAS LC22A column heater). The mobile phase is 0.1 M sodium phosphate (pH 3.0), 0.1 mM EDTA, 0.2-0.4 mM 1-Octane Sulfonic Acid (Eastman-Kodak), and 0.35% acetonitrile (v/v), filtered through a 0.45 micron filter. Flow rate is of 1.2 ml/min. Four liter batches of mobile phase are optimized for separations by adjusting the pH, Octane Sulfonic Acid and column temperature. The mobile phase is recycled, and is continuously purged with helium gas to remove dissolved oxygen. Recycling of the mobile phase is almost essential to maintain good resolution for a reasonable period of time. The mobile phase shelf-life is maintained by using a flow switch (controlled by the integrator) to divert to waste the first 2-7 min of each run.

The electrodes are maintained at potentials of approximately 0.78 and 0.95V with respect to a Ag/AgC1 reference electrode. The electrode at the higher potential is used exclusively for the determination of tryptophan (and the NMDA internal standard). The 0.78 V potential provides a superior signal to noise ratio for detection of the monoamines and compounds, other than tryptophan. The chromatograms are stored on the hard drive of the Empower workstation, and subsequently processed and the data transferred directly into an Excel spreadsheet for computation of metabolite amounts and compilation of group data.

Pump: Shimadzu LC-10AD
Cell: BAS Cross Flow. Glassy carbon working electrode at 0.780 and 0.950 V potential.
Detector: BAS LC-4B operated in dual channel mode.
Data Acq. System: Waters Empower Pro 2.
Injector: Waters WISP 717
Column: Waters Spherosorb ODS-1, 5 μM particle, 4.4 mm X 250 mm.

Name of the reagent Company Catalogue number
Sodium Dodecyl Sulfate (SDS) – J.T. Baker 4095-02
Trizma Base Sigma T1503-1KG
Trizma HCl Sigma T3253-1KG
Glycerol Sigma G8773-500 mL
PVP-40 Sigma PVP40-1KG
dPBS Gibco 21600-069
Tween20 Sigma P1379-500 mL
Glycine Sigma G8898-1KG
Ponceau S Fluka 81460
Bromophenol Blue Sigma B8026-5G
Dithiothreitol Sigma D-9163
Protein Standard 2 mg BSA Sigma P5619-25VL
Pierce BCA Protein Assay Reagent A Thermo- Fisher Scientific 23223
Precision Plus Protein Standard Bio Rad 161-0373
[125I]-protein A, specific activity Perkin-Elmer  

Table 2. Specific reagents.

Reagents Formulas
10% SDS 10 g SDS, 100 mL DI H20
1% SDS (pH to 8.2)
  1. 10 mL 10%SDS
  2. 60.5 mg Trizma Base
  3. 37.22 mg EDTA
  4. 90 mL DI H20
Copper II Sulfate Solution
  1. 1 g Copper II sulfate
  2. 25 mL DI H20
3X Sample Buffer
  1. Trizma Base 2.27 g
  2. SDS 6 g
  3. Dithiothreitol 0.463 g
  4. Glycerol 30 g
  5. Bromophenol Blue 10 mg
  6. D I H20 (initially add above reagents to 40 mL of H20 in a graduated cylinder; then add H20 until volume reaches 100 mL)
  7. HCl (add as needed to reach pH of 6.85)
  8. Freeze solution in 50 2.0 mL tubes.
(makes 100 mL): Volume of 3X Sample Buffer needed = ½ volume of SDS used in sample.
1X Sample Buffer Dilute 3X Sample Buffer down to 1X sample buffer using DI H20
10X Running Buffer (Makes 4 L)
  1. Trizma Base 121.1 g
  2. Glycine 577 g
  3. SDS 40 g
10X Transfer Buffer: (Makes 4 L)
  1. Glycine 360 g
  2. Trizma Base 96 g
Ponceau
  1. Ponceau S. 0.5 g
  2. Acetic Acid 5 mL
  3. DI H20 95 mL
.2% HCl Solution 5.2 mL HCl in 500mL of DI H20
PVP-T20 Blocking Soln. (Makes 4 L)
  1. PVP-40 40 g
  2. dPBS 38.2 g
  3. Tween20 2 g
  4. Thimerisol 0.4 g
  5. 1M Tris pH 7.6 (60.6 g Tris HCl + 13.9 g Tris Base in 500 mL DI H20)- 50 mL
10X Blot Buffer (Makes 4 L)
  1. Tween 20 20 g
  2. Tris Base 14 g
  3. Tris HCl 61 g

Table 3. Protein Assay and Western Blotting Formulas.

Tyrosine hydroxylase standards: The calibrated TH protein and phosphorylation standards used by this laboratory are derived from PC12 cell extracts, which were analyzed for TH protein content and phosphorylation stoichiometries against a previously calibrated TH standards that ultimately originated from the laboratory of Dr. John Haycock 11.

References

  1. Trevitt, J. T., Carlson, B. B., Nowend, K., Salamone, J. D. Substantia nigra pars reticulate is a highly potent site of action for the behavioral effects of the D1 antagonist SCH23390 in rat. Psychopharmacology. 156, 32-41 (2001).
  2. Salvatore, M. F., Pruett, B. S., Spann, S. L., Dempsey, C. Aging reveals a role for nigral tyrosine hydroxylase ser31 phosphorylation in locomotor activity generation. PLoS ONE. 4, e8466 (2009).
  3. Rossato, J. L., Bevilaqua, L. R. M., Izquierdo, I., Medina, J. H., Cammarota, M. Dopamine controls persistence of long-term memory storage. Science. 325, 1017-1020 (2009).
  4. Keller, C. M., Salvatore, M. F., Pruett, B. S., Guerdin, G. F., Goeders, N. E. Biphasic dopamine regulation in mesoaccumbens pathway in response to non-contigent binge and escalating methamphetamine regimens in the Wistar rat. Psychopharmacology. 215, 513-526 (2011).
  5. Lu, L., Dempsey, J., Liu, S. Y., Bossert, J. M., Shaham, Y. A single infusion of brain-derived neurotrophic factor into the ventral tegmental area induces long-lasting potentiation of cocaine seeking after withdrawal. J. Neurosci. 24, 1604-1611 (2004).
  6. Hoffer, B. J., Hoffman, A., Bowenkamp, K., Huettl, P., Hudson, J., Martin, D., Lin, L. F., Gerhardt, G. A. Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo. Neurosci. Lett. 182, 107-111 (1994).
  7. Salvatore, M. F., Zhang, J. L., Large, D. M., Wilson, P. E., Gash, C. R., Thomas, T. C., Haycock, J. W., Bing, G., Stanford, J. A., Gash, D. M., Gerhardt, G. A. Striatal GDNF administration increases tyrosine hydroxylase phosphorylation in the rat striatum and substantia nigra. J. Neurochem. 90, 245-254 (2004).
  8. Lu, L., Wang, X., Wu, P., Xu, C., Zhao, M., Morales, M., Harvey, B. K., Hoffer, B. J., Shaham, Y. Role of ventral tegmental area glial cell-line derived neurotrophic factor in incubation of cocaine craving. Biol. Psychiatry. 66, 137-145 (2009).
  9. Lavicky, J., Dunn, A. J. Corticotropin-releasing factor stimulates catecholamine release in hypothalamus and prefrontal cortex in freely moving rats as assessed by microdialysis. J. Neurochem. 60, 602-612 (1993).
  10. Salvatore, M. F., Pruett, B. S. Dichotomy of tyrosine hydroxylase and dopamine regulation between somatodendritic and terminal field areas of nigrostriatal and mesoaccumbens pathways. PLoS ONE. 7, e29867 (2012).
  11. Salvatore, M. F., Garcia-Espana, A., Goldstein, M., Deutch, A. Y., Haycock, J. W. Stoichiometry of tyrosine hydroxylase phosphorylation in the nigrostriatal and mesolimbic systems in vivo: Effects of acute haloperidol and related compounds. J. Neurochem. 75, 225-232 (2000).
  12. Salvatore, M. F., Waymire, J. C., Haycock, J. W. Depolarization-stimulated catecholamine biosynthesis: involvement of protein kinases and tyrosine hydroxylase phosphorylation sites in situ. J. Neurochem. 79, 349-360 (2001).
  13. Haycock, J. W., Lew, J. Y., Garcia-Espana, A., Lee, K. Y., Harada, K., Meller, E., Goldstein, M. Role of serine-19 phosphorylation in regulating tyrosine hydroxylase studied with site- and phosphospecific antibodies and site-directed mutagenesis. J. Neurochem. 71, 1670-1675 (1998).
  14. Lindgren, N., Xu, Z. Q., Linskog, M., Herrera-Marschitz, M., Goiny, M., Haycock, J. W., Goldstein, M., Hokfelt, T., Fisone, G. Regulation of tyrosine hydroxylase activity and phosphorylation at ser19 and ser40 via activation of glutamate NMDA receptors in rat striatum. J. Neurochem. 74, 2470-2477 (2000).
check_url/fr/4171?article_type=t

Play Video

Citer Cet Article
Salvatore, M. F., Pruett, B. S., Dempsey, C., Fields, V. Comprehensive Profiling of Dopamine Regulation in Substantia Nigra and Ventral Tegmental Area. J. Vis. Exp. (66), e4171, doi:10.3791/4171 (2012).

View Video