Summary

पारगम्यता के लिए Zebrafish भ्रूण Neuroepithelium की एक परख

Published: October 24, 2012
doi:

Summary

हम एक जीवित भ्रूण zebrafish मस्तिष्क की पारगम्यता के लिए पूरे पशु मात्रात्मक माप का वर्णन. तकनीक न्यूरल ट्यूब लुमेन के भीतर मस्तिष्कमेरु और विभिन्न आणविक भार के तरल पदार्थ अणुओं को बनाए रखने की क्षमता का विश्लेषण करती है और उनके आंदोलन ventricles के बाहर quantifies. इस विधि उपकला और विकास और रोग के दौरान पारगम्यता परिपक्वता में मतभेद के बारे में फैसला लेने के लिए उपयोगी है.

Abstract

The brain ventricular system is conserved among vertebrates and is composed of a series of interconnected cavities called brain ventricles, which form during the earliest stages of brain development and are maintained throughout the animal’s life. The brain ventricular system is found in vertebrates, and the ventricles develop after neural tube formation, when the central lumen fills with cerebrospinal fluid (CSF) 1,2. CSF is a protein rich fluid that is essential for normal brain development and function3-6.

In zebrafish, brain ventricle inflation begins at approximately 18 hr post fertilization (hpf), after the neural tube is closed. Multiple processes are associated with brain ventricle formation, including formation of a neuroepithelium, tight junction formation that regulates permeability and CSF production. We showed that the Na,K-ATPase is required for brain ventricle inflation, impacting all these processes 7,8, while claudin 5a is necessary for tight junction formation 9. Additionally, we showed that “relaxation” of the embryonic neuroepithelium, via inhibition of myosin, is associated with brain ventricle inflation.

To investigate the regulation of permeability during zebrafish brain ventricle inflation, we developed a ventricular dye retention assay. This method uses brain ventricle injection in a living zebrafish embryo, a technique previously developed in our lab10, to fluorescently label the cerebrospinal fluid. Embryos are then imaged over time as the fluorescent dye moves through the brain ventricles and neuroepithelium. The distance the dye front moves away from the basal (non-luminal) side of the neuroepithelium over time is quantified and is a measure of neuroepithelial permeability (Figure 1). We observe that dyes 70 kDa and smaller will move through the neuroepithelium and can be detected outside the embryonic zebrafish brain at 24 hpf (Figure 2).

This dye retention assay can be used to analyze neuroepithelial permeability in a variety of different genetic backgrounds, at different times during development, and after environmental perturbations. It may also be useful in examining pathological accumulation of CSF. Overall, this technique allows investigators to analyze the role and regulation of permeability during development and disease.

Protocol

1. Microinjection के लिए तैयारी केशिका Sutter उपकरणों सुई डांड़ी का उपयोग ट्यूबों खींच कर microinjection सुइयों तैयार. फ्लोरोसेंट डाई के साथ लोड microinjection सुई (FITC Dextran). Micromanipulator और microinjection तंत्र पर सुई माउंट. सावधानी के microinjec…

Discussion

हम करने के लिए रहने वाले भ्रूण zebrafish मस्तिष्क के पारगम्यता यों के रूप में एक दिया आणविक वजन के एक इंजेक्शन डाई के लिए निर्धारित करने की क्षमता प्रदर्शित करता है. हमारी अवलोकन है है कि भ्रूण zebrafish neuroepithelium विभि?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

इस काम के मानसिक स्वास्थ्य के लिए राष्ट्रीय संस्थान, और राष्ट्रीय विज्ञान फाउंडेशन द्वारा समर्थित किया गया. कई उपयोगी चर्चा और रचनात्मक आलोचना, विशेषज्ञ मछली पालन के लिए और ओलिवर Paugois के लिए निर्णायक प्रयोगशाला के सदस्यों के लिए विशेष धन्यवाद.

Materials

Name of Reagent Company Catalogue number
Dextran, Fluorescein, Anionic, Lysine Fixable Invitrogen D7136, D7137, D1822, D1820, D1845
Tricaine powder Sigma A5040
Capillary Tubes FHC Inc. 30-30-1

References

  1. Harrington, M. J., Hong, E., Brewster, R. Comparative analysis of neurulation: first impressions do not count. Mol. Reprod. Dev. 76, 954-965 (2009).
  2. Lowery, L. A., Sive, H. Strategies of vertebrate neurulation and a re-evaluation of teleost neural tube formation. Mech. Dev. 121, 1189-1197 (2004).
  3. Salehi, Z., Mashayekhi, F. The role of cerebrospinal fluid on neural cell survival in the developing chick cerebral cortex: an in vivo study. Eur. J. Neurol. 13, 760-764 (2006).
  4. Martin, C. Early embryonic brain development in rats requires the trophic influence of cerebrospinal fluid. Int. J. Dev. Neurosci. 27, 733-740 (2009).
  5. Lehtinen, M. K. The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron. 69, 893-905 (2011).
  6. Gato, A. Embryonic cerebrospinal fluid regulates neuroepithelial survival, proliferation, and neurogenesis in chick embryos. Anat. Rec. A. Discov. Mol. Cell Evol. Biol. 284, 475-484 (2005).
  7. Lowery, L. A., Sive, H. Totally tubular: the mystery behind function and origin of the brain ventricular system. Bioessays. 31, 446-458 (2009).
  8. Lowery, L. A., Sive, H. Initial formation of zebrafish brain ventricles occurs independently of circulation and requires the nagie oko and snakehead/atp1a1a.1 gene products. Development. 132, 2057-2067 (2005).
  9. Zhang, J. Establishment of a neuroepithelial barrier by Claudin5a is essential for zebrafish brain ventricular lumen expansion. Proc. Natl. Acad. Sci. U.S.A. 107, 1425-1430 (2010).
  10. Gutzman, J. H., Sive, H. Zebrafish brain ventricle injection. J. Vis. Exp. , (2009).
  11. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253-310 (1995).
  12. Westerfield, M., Sprague, J., Doerry, E., Douglas, S., Grp, Z. The Zebrafish Information Network (ZFIN): a resource for genetic, genomic and developmental research. Nucleic Acids Research. 29, 87-90 (2001).
check_url/fr/4242?article_type=t

Play Video

Citer Cet Article
Chang, J. T., Sive, H. An Assay for Permeability of the Zebrafish Embryonic Neuroepithelium. J. Vis. Exp. (68), e4242, doi:10.3791/4242 (2012).

View Video