Summary

使用LysoTracker检测及鉴别胚胎干细胞在胚胎细胞程序性死亡

Published: October 11, 2012
doi:

Summary

我们提出了一个简单的协议,可视化地区的小鼠胚胎中的细胞程序性死亡(PCD)和鉴别胚胎干(ES)细胞培养,使用高度水溶性染料LysoTracker。

Abstract

程序性细胞死亡(PCD)发生于成人,以维持正常组织稳态和胚胎发育过程中形成组织和器官1,2,6,7。在开发过程中,有毒化学物质或基因的改变可以导致PCD增加或改变PCD的模式,导致发育异常和出生缺陷3-5。要了解这些缺陷的病因学,胚胎的研究,使用区分胚胎干细胞(ES细胞) 在体外实验中,可以补充。

细胞凋亡是一种形式的PCD研究,既包括内在的和外在的信号,激活半胱天冬酶的酶级联。细胞特性的变化包括膜皱缩,核收缩,且DNA碎片。不涉及其他形式的PCD半胱天冬酶的激活,最终的结果可能是长期自噬。无论PCD的途径,死亡的细胞需要被删除。在成年人中,免疫细胞PERFORM功能,而在胚胎的免疫系统尚未开发,拆除产生的一种替代机制。这种机制涉及到邻近的细胞(称为“非专业吞噬细胞”),吞噬作用,他们认识到表面上的死细胞和吞噬8-10“吃我”的信号。吞噬后,碎片带来的溶酶体降解。因此无论PCD机制,溶酶体活性的增加可以增加细胞死亡相关。

要学习PCD,一个简单的分析,可视化厚的组织和多层区分文化的溶酶体中是有用的。 LysoTracker染料是一种高度可溶性小分子,被保持在如酸性亚细胞溶酶体11-13。的染料是采取了通过扩散和通过循环。由于是不是一个障碍,可视化的PCD在厚厚的组织和多层次的文化渗透是可能的12,13 </支持>。与此相反,TUNEL(末端脱氧核苷酸转移酶缺口末端标记法)分析14,仅限于小样本,组织切片和单层培养,因为此过程需要进入/渗透终端转移。

相反,扩散和溶解的溶剂苯胺蓝,DND-99 LysoTracker红,是可以解决的,明亮的,稳定的。染色可以可视化与标准荧光或共聚焦显微镜在整个贴装或部分,使用水性或溶剂型的安装媒体12,13。在这里,我们描述了使用此染料看,PCD在正常 Sonic Hedgehog null小鼠胚胎的协议。此外,我们表现出ES细胞培养鉴别分析PCD,并提出一个简单的量化方法。总之,LysoTracker染色检测PCD的其他方法可以是一个很好的补充。

Protocol

1。 LysoTracker染小鼠胚胎生成的小鼠胚胎放置年轻女性到男性螺柱笼(5-6周龄)。监视以下早晨指示,交配阴道栓的外观发生。如果女性怀孕了,中午在这一天被称为0.5 DPC(天交配后)。这里介绍的是该程序的胚胎7-13 DPC的理想选择。 在胚胎的利益,根据经批准的协议和安乐死的女性,切除子宫。从一个10厘米的培养皿中,用Hanks,BSS(无酚红)的蜕膜中取出胚胎。删除多余的胚胎?…

Discussion

细胞凋亡的重要标志包括与TUNEL检测的DNA损伤的检测,沿与caspase活性的检测(检测的单克隆抗体或结合分子如ZVAD-芬兰马克),观察细胞的变化,和介绍的磷脂酰丝氨酸(PS )在膜表面上(Annexin V结合)中检测到的。与每个这些检测方法也有一些缺点。例如,TUNEL法检测中使用的末端转移不穿透超越几个细胞层。膜联蛋白V可以标记细胞不进行细胞凋亡,如那些具有的膜破坏,(膜联蛋白V得到在细?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

我们感谢帮助编辑的马里亚尼实验室的协议。这项工作是由一个摆围博士后培训津贴(JLF),的CIRM的BRIDGES实习(TZTT),罗伯特·E.五月R.莱特基金会(FVM),美国南加州大学(FVM)。

Materials

Name of the reagent Company   Catalogue number
LysoTracker Red DND-99 Invitrogen #L-7528  
Hanks BSS Invitrogen 14025-076  
Paraformaldehyde EMD EM-PX0055-3  
Vectashield VECTOR H-1200  
DMEM Cellgro 10-013-CV  
Non-essential amino acids Cellgro 25-025-CI  
Sodium pyruvate Cellgro 25-000-CI  
FBS Hyclone SH30071.02  
Pen-Strep Invitrogen 15140-122  
b-Mercaptoethanol, 50 mM Invitrogen 21985-023  
LabTek-II Chamber slides
(8-well)
Nalge Nunc International 154534  
0.1% Gelatin Millipore ES-006-B  
Dulbecco’s PBS (D-PBS) Cellgro 21-031-CV  
     

Solution Recipes

4% Paraformaldehyde

For 100 ml:

  1. Mix 4 g paraformaldehyde, 90 ml H2O, and NaOH (a drop of 2N NaOH). The paraformaldehyde will not go into solution until you have added some NaOH to increase the pH.
  2. Stir and heat at 60 °C until all the powder is in solution (~10-20 min). Do not overheat.
  3. Add ~10 ml 10x PBS to achieve a final volume of 100 ml.
  4. Store at -20 °C in convenient (~10 ml or ~40 ml) aliquots.

WARNING: Paraformaldehyde in ‘frill’ form (compressed small pellets) is less powdery and can therefore be measured outside of a hood. However you should still wear a protective dust mask (N95 at least) during handling.

EB Culture Media

For 500 ml EB Media:

DMEM: 404.5 ml
FBS: 75.0 ml
L-Glutamine: 5.0 ml
Penicillin/Streptomycin: 5.0 ml
Non-essential amino acids: 5.0 ml
Sodium pyruvate: 5.0 ml
β-Mercaptoethanol: 500 μl

References

  1. Baehrecke, E. H. How death shapes life during development. Nat. Rev. Mol. Cell Biol. 3, 779-787 (2002).
  2. Meier, P., Finch, A., Evan, G. Apoptosis in development. Nature. 407, 796-801 (2000).
  3. Ikonomidou, C. Ethanol-induced apoptotic neurodegeneration and fetal alcohol syndrome. Science. 287, 1056-1060 (2000).
  4. Dunty, W. C., Chen, S. Y., Zucker, R. M., Dehart, D. B., Sulik, K. K. Selective vulnerability of embryonic cell populations to ethanol-induced apoptosis: implications for alcohol-related birth defects and neurodevelopmental disorder. Alcohol Clin. Exp. Res. 25, 1523-1535 (2001).
  5. Price, O. T., Lau, C., Zucker, R. M. Quantitative fluorescence of 5-FU-treated fetal rat limbs using confocal laser scanning microscopy and Lysotracker. Cytometry A. 53, 9-21 (2003).
  6. Jacobson, M. D., Weil, M., Raff, M. C. Programmed cell death in animal development. Cell. 88, 347-354 (1997).
  7. Fuchs, Y., Steller, H. Programmed cell death in animal development and disease. Cell. 147, 742-758 (2011).
  8. Qu, X. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell. 128, 931-946 (2007).
  9. Grimsley, C., Ravichandran, K. S. Cues for apoptotic cell engulfment: eat-me, don’t eat-me and come-get-me signals. Trends Cell Biol. 13, 648-656 (2003).
  10. Lauber, K., Blumenthal, S. G., Waibel, M., Wesselborg, S. Clearance of apoptotic cells: getting rid of the corpses. Mol. Cell. 14, 277-287 (2004).
  11. Haller, T., Dietl, P., Deetjen, P., Volkl, H. The lysosomal compartment as intracellular calcium store in MDCK cells: a possible involvement in InsP3-mediated Ca2+ release. Cell Calcium. 19, 157-165 (1996).
  12. Zucker, R. M., Hunter, S., Rogers, J. M. Confocal laser scanning microscopy of apoptosis in organogenesis-stage mouse embryos. Cytometry. 33, 348-354 (1998).
  13. Zucker, R. M., Hunter, E. S., Rogers, J. M. Apoptosis and morphology in mouse embryos by confocal laser scanning microscopy. Methods. 18, 473-480 (1999).
  14. Gavrieli, Y., Sherman, Y., Ben-Sasson, S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493-501 (1992).
  15. Foty, R. A Simple Hanging Drop Cell Culture Protocol for Generation of 3D Spheroids. J. Vis. Exp. (51), e2720 (2011).
  16. Chiang, C. Manifestation of the limb prepattern: limb development in the absence of sonic hedgehog function. Dev. Biol. 236, 421-435 (2001).
  17. Ishibashi, M., McMahon, A. P. A sonic hedgehog-dependent signaling relay regulates growth of diencephalic and mesencephalic primordia in the early mouse embryo. Development. 129, 4807-4819 (2002).
  18. Schuldiner, M. Induced neuronal differentiation of human embryonic stem cells. Brain Res. 913, 201-205 (2001).
  19. Bain, G., Kitchens, D., Yao, M., Huettner, J. E., Gottlieb, D. I. Embryonic stem cells express neuronal properties in vitro. Dev. Biol. 168, 342-357 (1995).
  20. Dumont, A. Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-kappaB. Oncogene. 18, 747-757 (1999).
  21. Hampton, M. B., Orrenius, S. Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett. 414, 552-556 (1997).
  22. Wood, W. Mesenchymal cells engulf and clear apoptotic footplate cells in macrophageless PU.1 null mouse embryos. Development. 127, 5245-5252 (2000).
  23. Scott, R. C., Juhasz, G., Neufeld, T. P. Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr. Biol. 17, 1-11 (2007).
  24. Rodriguez-Enriquez, S., Kim, I., Currin, R. T., Lemasters, J. J. Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes. Autophagy. 2, 39-46 (2006).
  25. Bampton, E. T., Goemans, C. G., Niranjan, D., Mizushima, N., Tolkovsky, A. M. The dynamics of autophagy visualized in live cells: from autophagosome formation to fusion with endo/lysosomes. Autophagy. 1, 23-36 (2005).
  26. Boya, P., Mellen, M. A., de la Rosa, E. J. How autophagy is related to programmed cell death during the development of the nervous system. Biochem. Soc. Trans. 36, 813-817 (2008).
  27. Galluzzi, L. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ. 16, 1093-1107 (2009).
  28. Klionsky, D. J. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy. 4, 151-175 (2008).
check_url/fr/4254?article_type=t

Play Video

Citer Cet Article
Fogel, J. L., Thein, T. Z. T., Mariani, F. V. Use of LysoTracker to Detect Programmed Cell Death in Embryos and Differentiating Embryonic Stem Cells. J. Vis. Exp. (68), e4254, doi:10.3791/4254 (2012).

View Video