Summary

Сопоставление корковой динамики Одновременное использование MEG / ЭЭГ и анатомически ограничен минимальной нормой Оценки: Пример слухового внимания

Published: October 24, 2012
doi:

Summary

Мы используем магнито-и электроэнцефалографии (MEG / ЭЭГ), в сочетании с анатомическую информацию, полученную при магнитно-резонансной томографии (МРТ), для отображения динамики корковых сети, связанные с слуховое внимание.

Abstract

Magneto- and electroencephalography (MEG/EEG) are neuroimaging techniques that provide a high temporal resolution particularly suitable to investigate the cortical networks involved in dynamical perceptual and cognitive tasks, such as attending to different sounds in a cocktail party. Many past studies have employed data recorded at the sensor level only, i.e., the magnetic fields or the electric potentials recorded outside and on the scalp, and have usually focused on activity that is time-locked to the stimulus presentation. This type of event-related field / potential analysis is particularly useful when there are only a small number of distinct dipolar patterns that can be isolated and identified in space and time. Alternatively, by utilizing anatomical information, these distinct field patterns can be localized as current sources on the cortex. However, for a more sustained response that may not be time-locked to a specific stimulus (e.g., in preparation for listening to one of the two simultaneously presented spoken digits based on the cued auditory feature) or may be distributed across multiple spatial locations unknown a priori, the recruitment of a distributed cortical network may not be adequately captured by using a limited number of focal sources.

Here, we describe a procedure that employs individual anatomical MRI data to establish a relationship between the sensor information and the dipole activation on the cortex through the use of minimum-norm estimates (MNE). This inverse imaging approach provides us a tool for distributed source analysis. For illustrative purposes, we will describe all procedures using FreeSurfer and MNE software, both freely available. We will summarize the MRI sequences and analysis steps required to produce a forward model that enables us to relate the expected field pattern caused by the dipoles distributed on the cortex onto the M/EEG sensors. Next, we will step through the necessary processes that facilitate us in denoising the sensor data from environmental and physiological contaminants. We will then outline the procedure for combining and mapping MEG/EEG sensor data onto the cortical space, thereby producing a family of time-series of cortical dipole activation on the brain surface (or “brain movies”) related to each experimental condition. Finally, we will highlight a few statistical techniques that enable us to make scientific inference across a subject population (i.e., perform group-level analysis) based on a common cortical coordinate space.

Protocol

1. Анатомические сбора и обработки данных Приобрести одну намагниченности подготовленные быстрое градиентное эхо (MPRAGE) МРТ субъекта. Это может занять 5-10 минут, в зависимости от конкретного протокола сканирования используется. Приобретите два дополнительных быстрых низким …

Discussion

Для того чтобы оценить дипольного активацию на кору от приобретенного MEG / данные ЭЭГ, нам нужно решить обратную задачу, которая не имеет единственное устойчивое решение, если соответствующие анатомически и физиологически звук ограничениями. Использование анатомических ограничений п…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Авторы хотели бы поблагодарить Матти С. Хямяляйнен, Lilla Zöllei и три анонимных рецензентов за их полезные комментарии. Источники финансирования: R00DC010196 (AKCL); T32DC000018 (EDL); T32DC005361 (РКМ).

Materials

Name of equipment / software Company / source
306-channel Vectorview MEG system Eleka-Neuromag Ltd,
1.5-T Avanto MRI scanner Siemens Medical Solutions
FreeSurfer http://freesurfer.net/
MNE software http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php
EEG electrodes Brain Products, Easycap GmbH
3Space Fastrak system Polhemus
Optical button box (FIU-932) Current Designs

References

  1. Fischl, B. Automatically parcellating the human cerebral cortex. Cerebral Cortex. 14, 11-22 (2004).
  2. Dale, A., Sereno, M. Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach. Journal of Cognitive Neuroscience. 5, 162-176 (1993).
  3. Fischl, B., Sereno, M. I., Dale, A. M. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage. 9, 195-207 (1999).
  4. Liu, H. Functional Mapping with Simultaneous MEG and EEG. Journal of Visualized Experiments. (40), e1668 (2010).
  5. Brainard, D. H. The Psychophysics Toolbox. Spatial Vision. 10, 433-436 (1997).
  6. Uusitalo, M. A., Ilmoniemi, R. J. Signal-space projection method for separating MEG or EEG into components. Med. Biol. Eng. Comput. 35, 135-140 (1997).
  7. Taulu, S., Simola, J., Kajola, M. Applications of the signal space separation method. IEEE Transactions on Signal Processing. 53, 3359-3372 (2005).
  8. Urbach, T. P., Kutas, M. Interpreting event-related brain potential (ERP) distributions: Implications of baseline potentials and variability with application to amplitude normalization by vector scaling. Biological Psychology. 72, 333-343 (2006).
  9. Lin, F. -. H., Belliveau, J. W., Dale, A. M., Hämäläinen, M. S. Distributed current estimates using cortical orientation constraints. Human Brain Mapping. 27, 1-13 (2006).
  10. Dale, A. Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron. 26, 55-67 (2000).
  11. Nichols, T., Hayasaka, S. Controlling the familywise error rate in functional neuroimaging: a comparative review. Statistical Methods in Medical Research. 12, 419-446 (2003).
  12. Nichols, T. E., Holmes, A. P. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Human Brain Mapping. 15, 1-25 (2001).
  13. Pantazis, D., Leahy, R. M., Hansen, P., Kringelbach, M., Salmelin, R. Statistical Inference in MEG Distributed Source Imaging. MEG: An Introduction to Methods. , 245-272 (2010).
  14. Ahveninen, J. Attention-driven auditory cortex short-term plasticity helps segregate relevant sounds from noise. Proceedings of the National Academy of Sciences. , 1-6 (2011).
  15. Sharon, D. The advantage of combining MEG and EEG: comparison to fMRI in focally stimulated visual cortex. Neuroimage. 36, 1225-1235 (2007).
  16. Herrmann, B., Maess, B., Hasting, A. S., Friederici, A. D. Localization of the syntactic mismatch negativity in the temporal cortex: An MEG study. NeuroImage. 48, 590-600 (2009).
  17. Baillet, S., Hansen, P., Kringelbach, M., Salmelin, R. The Dowser in the Fields: Searching for MEG Sources. MEG: An Introduction to Methods. , 83-123 (2010).
  18. Gutschalk, A., Micheyl, C., Oxenham, A. J. Neural correlates of auditory perceptual awareness under informational masking. PLoS Biology. 6, e138 (2008).

Play Video

Citer Cet Article
Lee, A. K., Larson, E., Maddox, R. K. Mapping Cortical Dynamics Using Simultaneous MEG/EEG and Anatomically-constrained Minimum-norm Estimates: an Auditory Attention Example. J. Vis. Exp. (68), e4262, doi:10.3791/4262 (2012).

View Video