Summary

Лазерная нанесенные травмы рыбок данио эмбриональных скелетных мышц

Published: January 30, 2013
doi:

Summary

Метод, представленный здесь, включает в себя точную травмы живых эмбрионов данио рерио с высокой энергии лазерных импульсов и последующего анализа этих травм и их восстановления с течением времени. Мы также покажем, как генетически помечены одной или группы клеток скелетных мышц могут быть отслежены во время и после лазерного света индуцированных повреждений.

Abstract

Various experimental approaches have been used in mouse to induce muscle injury with the aim to study muscle regeneration, including myotoxin injections (bupivacaine, cardiotoxin or notexin), muscle transplantations (denervation-devascularization induced regeneration), intensive exercise, but also murine muscular dystrophy models such as the mdx mouse (for a review of these approaches see 1). In zebrafish, genetic approaches include mutants that exhibit muscular dystrophy phenotypes (such as runzel2 or sapje3) and antisense oligonucleotide morpholinos that block the expression of dystrophy-associated genes4. Besides, chemical approaches are also possible, e.g. with Galanthamine, a chemical compound inhibiting acetylcholinesterase, thereby resulting in hypercontraction, which eventually leads to muscular dystrophy5. However, genetic and pharmacological approaches generally affect all muscles within an individual, whereas the extent of physically inflicted injuries are more easily controlled spatially and temporally1. Localized physical injury allows the assessment of contralateral muscle as an internal control. Indeed, we recently used laser-mediated cell ablation to study skeletal muscle regeneration in the zebrafish embryo6, while another group recently reported the use of a two-photon laser (822 nm) to damage very locally the plasma membrane of individual embryonic zebrafish muscle cells7.

Here, we report a method for using the micropoint laser (Andor Technology) for skeletal muscle cell injury in the zebrafish embryo. The micropoint laser is a high energy laser which is suitable for targeted cell ablation at a wavelength of 435 nm. The laser is connected to a microscope (in our setup, an optical microscope from Zeiss) in such a way that the microscope can be used at the same time for focusing the laser light onto the sample and for visualizing the effects of the wounding (brightfield or fluorescence). The parameters for controlling laser pulses include wavelength, intensity, and number of pulses.

Due to its transparency and external embryonic development, the zebrafish embryo is highly amenable for both laser-induced injury and for studying the subsequent recovery. Between 1 and 2 days post-fertilization, somitic skeletal muscle cells progressively undergo maturation from anterior to posterior due to the progression of somitogenesis from the trunk to the tail8, 9. At these stages, embryos spontaneously twitch and initiate swimming. The zebrafish has recently been recognized as an important vertebrate model organism for the study of tissue regeneration, as many types of tissues (cardiac, neuronal, vascular etc.) can be regenerated after injury in the adult zebrafish10, 11.

Protocol

1. Маркировка отдельных клеток Вводят одну клетку эмбриона сцене с плазмидой GFP кодирования или любой GFP-гибридного белка под контролем β-актин промотора. Во время разработки, GFP тогда выражается в виде мозаики моды. Здесь мы использовали трансгенные конструкции Tg [β-акт?…

Representative Results

Лазерная опосредованной травмы была выполнена на иммобилизованных 1 день-эмбрионов. Как показано на рисунке 1, в нескольких лазерных импульсов можно создать небольшую рану, легко узнаваемый по поврежденным, петельная, актин богатых миофибрилл, что, как правило, натянутой межд?…

Discussion

Лазерная опосредованной травмы является мощным методом для нанесения ран желаемый размер разрушающимся клеток для изучения регенерации в контролируемых условиях у рыбок данио эмбрионов. Примечательно, что клетки могут быть нацелены именно (рис. 2), и оба травм области, а такж?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Мы благодарим Боб Новак (Андор технологии) за техническую помощь и советы. SA-S. поддерживается Гейзенберга общение Deutsche Forschungsgemeinschaft (DFG). Эта работа была поддержана грантом DFG SE2016/7-1.

Materials

Heating block
Pair #5 forceps Dumont
Glass slides Menzel 76 x 26 mm
Coverslips Roth 50 x 24 mm #1
Petroleum jelly
Stereomicroscope Leica MZFLIII
Micropoint laser Andor Technology
Fluorescence microscope Zeiss Axioplan II
Metamorph software Molecular devices
Reagents
  • Low-melting point agarose ( #50081, Lonza)
  • Tricaine stock solution: 400 mg Tricaine (#A-5040, Sigma-Aldrich ) / 100 ml dH2O pH 9.0
  • E3 medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM MgSO4)

References

  1. Charge, S. B., Rudnicki, M. A. Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 84, 209-238 (2004).
  2. Steffen, L. S. The zebrafish runzel muscular dystrophy is linked to the titin gene. Dev. Biol. 309, 180-192 (2007).
  3. Bassett, D., Currie, P. D. Identification of a zebrafish model of muscular dystrophy. Clin. Exp. Pharmacol. Physiol. 31, 537-540 (2004).
  4. Kawahara, G., Serafini, P. R., Myers, J. A., Alexander, M. S., Kunkel, L. M. Characterization of zebrafish dysferlin by morpholino knockdown. Biochem. Biophys. Res. Commun. 413, 358-363 (2011).
  5. Behra, M., Etard, C., Cousin, X., Strähle, U. The use of zebrafish mutants to identify secondary target effects of acetylcholine esterase inhibitors. Toxicol. Sci. 77, 325-333 (2004).
  6. Otten, C., et al. Xirp proteins mark injured skeletal muscle in zebrafish. PLoS One. 7, e31041 (2012).
  7. Roostalu, U., Strähle, U. In vivo imaging of molecular interactions at damaged sarcolemma. Dev. Cell. 22, 515-529 (2012).
  8. Stickney, H. L., Barresi, M. J., Devoto, S. H. Somite development in zebrafish. Dev. Dyn. 219, 287-303 (2000).
  9. Stellabotte, F., Dobbs-McAuliffe, B., Fernandez, D. A., Feng, X., Devoto, S. H. Dynamic somite cell rearrangements lead to distinct waves of myotome growth. Development. 134, 1253-1257 (2007).
  10. Choi, W. Y., Poss, K. D. Cardiac regeneration. Curr. Top. Dev. Biol. 100, 319-344 (2012).
  11. Stewart, S., Stankunas, K. Limited dedifferentiation provides replacement tissue during zebrafish fin regeneration. Dev. Biol. 365, 339-349 (2012).
  12. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. , 203-253 (1995).
check_url/fr/4351?article_type=t

Play Video

Citer Cet Article
Otten, C., Abdelilah-Seyfried, S. Laser-inflicted Injury of Zebrafish Embryonic Skeletal Muscle. J. Vis. Exp. (71), e4351, doi:10.3791/4351 (2013).

View Video