Summary

मात्रात्मक उच्च throughput टी कोशिकाओं के लिए एकल कक्ष cytotoxicity परख

Published: February 02, 2013
doi:

Summary

हम एक एकल कोशिका उच्च throughput टी कोशिकाओं की cytotoxicity उपाय जब ट्यूमर लक्ष्य कोशिकाओं के साथ incubated परख का वर्णन. इस विधि उप nanoliter कुओं (~ 100.000 कुओं सरणी /) के एक घने, elastomeric सरणी spatially सीमित टी परिभाषित अनुपात में और कोशिकाओं लक्ष्य कोशिकाओं को रोजगार और प्रतिदीप्ति माइक्रोस्कोपी मिलकर effector लक्ष्य विकार और बाद में apoptosis की निगरानी.

Abstract

Cancer immunotherapy can harness the specificity of immune response to target and eliminate tumors. Adoptive cell therapy (ACT) based on the adoptive transfer of T cells genetically modified to express a chimeric antigen receptor (CAR) has shown considerable promise in clinical trials1-4. There are several advantages to using CAR+ T cells for the treatment of cancers including the ability to target non-MHC restricted antigens and to functionalize the T cells for optimal survival, homing and persistence within the host; and finally to induce apoptosis of CAR+ T cells in the event of host toxicity5.

Delineating the optimal functions of CAR+ T cells associated with clinical benefit is essential for designing the next generation of clinical trials. Recent advances in live animal imaging like multiphoton microscopy have revolutionized the study of immune cell function in vivo6,7. While these studies have advanced our understanding of T-cell functions in vivo, T-cell based ACT in clinical trials requires the need to link molecular and functional features of T-cell preparations pre-infusion with clinical efficacy post-infusion, by utilizing in vitro assays monitoring T-cell functions like, cytotoxicity and cytokine secretion. Standard flow-cytometry based assays have been developed that determine the overall functioning of populations of T cells at the single-cell level but these are not suitable for monitoring conjugate formation and lifetimes or the ability of the same cell to kill multiple targets8.

Microfabricated arrays designed in biocompatible polymers like polydimethylsiloxane (PDMS) are a particularly attractive method to spatially confine effectors and targets in small volumes9. In combination with automated time-lapse fluorescence microscopy, thousands of effector-target interactions can be monitored simultaneously by imaging individual wells of a nanowell array. We present here a high-throughput methodology for monitoring T-cell mediated cytotoxicity at the single-cell level that can be broadly applied to studying the cytolytic functionality of T cells.

Protocol

1. अभिकर्मकों तैयारी पेनिसिलिन – स्ट्रेप्टोमाइसिन, एल glutamine, और HEPES समाधान के प्रत्येक 500 मिलीलीटर RPMI 1640 और 5 मिलीग्राम मिश्रण द्वारा RPMI PLGH तैयारी. 10% भ्रूण गोजातीय सीरम (FBS) के साथ RPMI PLGH मिश्रण से तैयार R10 समा?…

Representative Results

उच्च throughput cytolytic परख के आवेदन का एक उदाहरण चित्रा 2 में प्रदर्शन किया है. संक्षेप में, कार CD19 विशिष्ट लेबल + टी कोशिकाओं लेबल माउस EL4 व्यक्तिगत कुओं एक nanowell सरणी के (1-5 अनुभाग) में कोशिकाओं के लक्ष्य के स…

Discussion

हम एक उच्च throughput एकल कोशिका cytolytic effectors और nanowells (1 चित्रा) के arrays में लक्ष्य के सह ऊष्मायन के माध्यम से सक्षम परख के लिए प्रोटोकॉल रेखांकित किया है. Throughput के अलावा तकनीक का एक प्रमुख लाभ वांछित लक्ष्य कोशिकाओ…

Disclosures

The authors have nothing to disclose.

Acknowledgements

अनुसंधान के इस प्रकाशन में बताया पुरस्कार R01CA174385 संख्या के तहत स्वास्थ्य के राष्ट्रीय संस्थान के राष्ट्रीय कैंसर संस्थान द्वारा समर्थित किया गया था. सामग्री केवल लेखकों की ज़िम्मेदारी है और स्वास्थ्य के राष्ट्रीय संस्थानों के अधिकारी विचार जरूरी नहीं प्रतिनिधित्व.

Materials

Name of Reagent/Material Company Catalogue Number Comments
RPMI-1640 w/o L-glutamine Cellgro 15-040-CV  
Penicillin-streptomycin Cellgro 30-002-CI 10,000 I.U. Penicillin 10,000 μg/ml Streptomycin
L-glutamine Cellgro 25-005-CI 200 mM solution
HEPES Sigma Aldrich H3537 1M
Fetal bovine serum (FBS) Atlanta Biologicals S11150 Lot tested
Cell Tracker Red Stain Invitrogen C34552 50 μg
Vybrant DyeCycle Violet Stain Invitrogen V35003 5 mM
SYTOX green Nucleic Acid Stain Invitrogen S7020 5 mM
Annexin V-Alexa Fluor 647 Invitrogen A23204 500 μl
Dulbecco’s PBS Cellgro 21-031-CV 500 ml
Noble agar DIFCO 2M220 100 g
Trypan Blue Sigma Aldrich T8154 0.4% liquid, sterile filtered
Hemocytometer Hausser Scientifics 1492 Bright line
4-well plate Thermo Fisher 167603  
Harrick Plasma Cleaner Harrick Plasma PDC-32G Basic plasma cleaner
Observer.Z1 ZEISS   Fluorescent microscope (works with the three parts below)
Lambda 10-3 Sutter Instrument   Filter controller
Lambda DG-4 Sutter Instrument   Ultra-High-Speed Wavelength switcher
Hamamatsu EM-CCD Camera Hamamatsu C9100-13 CCD-Microscope camera
15 ml conical tube BD Falcon 352097  
50 ml conical tube VWR 3282-345-300  
Nikon Biostation Nikon Instruments Inc. Biostation IM  
Glass bottom culture dish MatTek Corporation P35G-0 35 mm petri dish, 10 mm microwell

References

  1. Louis, C. U., et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood. 118, 6050-6056 (2011).
  2. Savoldo, B., et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. J. Clin. Invest. 121, 1822-1826 (2011).
  3. Kalos, M., et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3, 95ra73 (2011).
  4. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A., June, C. H. Chimeric Antigen Receptor-Modified T Cells in Chronic Lymphoid Leukemia. N. Engl. J. Med. , (2011).
  5. Restifo, N. P., Dudley, M. E., Rosenberg, S. A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 12, 269-281 (2012).
  6. Pittet, M. J., Weissleder, R. Intravital imaging. Cell. 147, 983-991 (2011).
  7. Sumen, C., Mempel, T. R., Mazo, I. B., von Andrian, U. H. Intravital microscopy: visualizing immunity in context. Immunity. 21, 315-329 (2004).
  8. Lamoreaux, L., Roederer, M., Koup, R. Intracellular cytokine optimization and standard operating procedure. Nat. Protoc. 1, 1507-1516 (2006).
  9. Varadarajan, N., et al. A high-throughput single-cell analysis of human CD8+ T cell functions reveals discordance for cytokine secretion and cytolysis. J. Clin. Invest. 121, 4322-4331 (2011).
  10. Ogunniyi, A. O., Story, C. M., Papa, E., Guillen, E., Love, J. C. Screening individual hybridomas by microengraving to discover monoclonal antibodies. Nat. Protoc. 4, 767-782 (2009).
  11. Streeck, H., Frahm, N., Walker, B. D. The role of IFN-gamma Elispot assay in HIV vaccine research. Nat. Protoc. 4, 461-469 (2009).
  12. Varadarajan, N., et al. Rapid, efficient functional characterization and recovery of HIV-specific human CD8+ T cells using microengraving. Proc. Natl. Acad. Sci. U.S.A. 109, 3885-3890 (2012).
  13. Makedonas, G., Betts, M. R. Living in a house of cards: re-evaluating CD8+ T-cell immune correlates against HIV. Immunol. Rev. 239, 109-124 (2011).
  14. Telford, W. G., Komoriya, A., Packard, B. Z. Multiparametric analysis of apoptosis by flow and image cytometry. Methods Mol. Biol. 263, 141-160 (2004).
check_url/50058?article_type=t

Play Video

Cite This Article
Liadi, I., Roszik, J., Romain, G., Cooper, L. J., Varadarajan, N. Quantitative High-throughput Single-cell Cytotoxicity Assay For T Cells. J. Vis. Exp. (72), e50058, doi:10.3791/50058 (2013).

View Video