Summary

在大鼠模型慢性营养输液

Published: August 14, 2013
doi:

Summary

慢性输注葡萄糖和脂肪乳大鼠的一种协议。该模型可用于研究营养过量对器官功能和生理参数的影响。

Abstract

长期暴露在过多的营养水平推测影响多个器官和组织的功能和许多与肥胖相关的并发症,代谢综合征,包括2型糖尿病的发展做出贡献。要研究的机制,葡萄糖和脂肪酸的含量超标会影响胰腺β-细胞分泌胰岛素,我们已经建立了一种慢性营养输液在大鼠模型。该程序由右颈静脉和左颈总动脉置管全身麻醉下,允许7天的恢复期;导管连接使用一个旋转的泵和配重系统,使动物在笼子里自由移动;和注入葡萄糖和/或脂肪乳剂(大豆油乳剂与肝素注入时产生约80的%unsaturated/20%的饱和脂肪酸的混合物),72小时。该模型提供了一些优势的水电站,包括精细调节的目标水平的葡萄糖和脂肪酸循环的可能性;合作注入药类化合物的选项,以及相对短的时间内,而不是饮食模型。它可以用来检查营养引起的功能障碍的机制,在各种器官和测试药物的有效性,在此上下文中。

Introduction

向2型糖尿病的发病机制,通过改变一些器官的功能,在维持葡萄糖体内平衡,包括有牵连,长期升高的血糖和血脂水平的循环中已被提出,但不限于,胰腺β-细胞(评论在1)中。糖毒性假说认为慢性高血糖引起高血糖摆在首位,从而形成恶性循环,在2型糖尿病患者血糖控制的恶化加剧了β细胞的缺陷。同样,glucolipotoxicity的假说认为,由于经常在2型糖尿病患者中观察到,伴随升高的血糖和血脂水平的β细胞的不利。

破译长期升高的营养物质的有害影响胰岛β-细胞功能的细胞和分子机制的理解是关键2型糖尿病的发病机制中的1毫微克。为此,大量的研究已审查机制在孤立的胰岛体外克隆,胰岛素分泌细胞线,慢性营养过剩体外 。然而,这些模型系统的整个有机体中得到的结果的翻译是复杂的,特别是因为用于在培养的细胞或胰岛细胞的脂肪酸的浓度很少2 在体内的β细胞中的周边相匹配的循环水平。另一方面,营养过量的β细胞功能衰竭的机制已被被检查的糖尿病的啮齿动物模型中,例如由朱克糖尿病大鼠脂肪3,4,沙土鼠Psammomys大眼金枪鱼 5和高脂肪的饮食美联储鼠标6。然而,这些模型中,其特征在于由内在代谢异常,并且不能容易地适合于操纵血糖和/或脂质水平中的更多的控制和慢性的设置。为了能够改变血中营养水平的时间表在其他正常动物的天,我们已经开发出一种慢性输液正常大鼠模型,使我们能够检查血脂和血糖的影响,单独或组合,生理参数和函数7,8。

Protocol

概述:该过程包括右颈静脉和左颈总动脉置管在全身麻醉下,允许7天的恢复期;导管连接使用一个旋转的泵和配重系统,使动物在笼子里自由移动;输注葡萄糖和/或脂 ​​肪乳剂(大豆油的乳液生成的混合物约80%unsaturated/20%的饱和脂肪酸时,注入肝素9)72小时。 1。右颈静脉和左颈总动脉Canulation 消毒手术器械。 canulation管也必须冷灭菌使用液?…

Representative Results

出一系列42只大鼠接受手术,在手术后期间丢失5只和1只,占整体86%的成功率在输液过程中丢失。最终注入的37只大鼠的平均体重为608±5克术前588±6克,开始输注(平均±SE,N = 37,P <0.0001配对t检验)。 2输液组:生理盐水(SAL),葡萄糖+脂肪乳(GLU + IL)。 图2A和2B显示血糖和脂肪酸水平,分别获得以下具有代表性的结果,在72小时输液期间。按照设计,血糖水平维持?…

Discussion

虽然所采用的以往的研究慢性输注葡萄糖( 例如 10-15)或脂质( 16,17)在啮齿动物中,据我们所知,这两种燃料的联合输注已被发现在小鼠18。这里介绍的慢性输液模型提供了多种优势,在大鼠多种生物学功能的影响进行研究营养过剩。首先,它并不涉及遗传性肥胖的啮齿动物,因为人类常见的肥胖是19多基因遗传,因此,结果是更可能是在一般?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作是由美国国立卫生研究院(R01DK58096到文森特Poitout)的支持。文森特Poitout持有加拿大研究主席在糖尿病和胰岛β细胞功能。贝德Zarrouki收到来自默克和礼来公司博士后奖学金。 Ghislaine FONTES是由加拿大糖尿病协会的博士后奖学金支持。

Materials

Name of Reagent/Material Company Catalog Number Comments
Saline 0.9% BD JB1324
Dextrose 70% McKesson
Intralipid 20% Fresenius Kabi JB6023
Metricide (Glutaraldehyde 2.6%) Metrex 11-1401
Heparin Sodium 10,000 USP u/ml PPC
Carprofen Metacam
Glycopyrrolate Sandoz
Isoflurane Abbott
Chlohexidine 2%
Alcohol 70%
Iodine
PE-50 BD 427411
CO-EX T22 Instech Solomon BCOEX-T22
Connector 22G Instech Solomon SC22/15
Swivel 22G Instech Solomon 375/22PS
Y-Connector 22G Instech Solomon
Counterbalance and arm Instech Solomon CM375BP
23 G blunted needles Instech Solomon LS23
23 G canulation pins Instech Solomon SP23/12
Tethers (12 inch) Lomir RT12D
Infusion jackets Lomir RJ01, RJ02, RJ03, RJ04
(SM-XL)
Tether attachment piece Lomir RS T1
60 ml syringe BD 309653
1 ml syringe BD 309602

References

  1. Poitout, V., Robertson, R. P. Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr. Rev. 29, 351-366 (2008).
  2. Poitout, V., et al. Glucolipotoxicity of the pancreatic beta cell. Biochim. Biophys. Acta. 1801, 289-298 (2010).
  3. Unger, R. H. Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome. Endocrinology. 144, 5159-5165 (2003).
  4. Harmon, J. S., Gleason, C. E., Tanaka, Y., Poitout, V., Robertson, R. P. Antecedent hyperglycemia, not hyperlipidemia, is associated with increased islet triacylglycerol content and decreased insulin gene mRNA level in Zucker diabetic fatty rats. Diabetes. 50, 2481-2486 (2001).
  5. Bachar, E., Ariav, Y., Cerasi, E., Kaiser, N., Leibowitz, G. Neuronal nitric oxide synthase protects the pancreatic beta cell from glucolipotoxicity-induced endoplasmic reticulum stress and apoptosis. Diabetologia. 53, 2177-2187 (2010).
  6. Peyot, M. L., et al. Beta-cell failure in diet-induced obese mice stratified according to body weight gain: secretory dysfunction and altered islet lipid metabolism without steatosis or reduced beta-cell mass. Diabetes. 59, 2178-2187 (2010).
  7. Hagman, D. K., et al. Cyclical and alternating infusions of glucose and intralipid in rats inhibit insulin gene expression and Pdx-1 binding in islets. Diabetes. 57, 424-431 (2008).
  8. Fontes, G., et al. Glucolipotoxicity age-dependently impairs beta cell function in rats despite a marked increase in beta cell mass. Diabetologia. 53, 2369-2379 (2010).
  9. Stein, D. T., et al. Essentiality of circulating fatty acids for glucose-stimulated insulin secretion in the fasted rat. J. Clin. Invest. 97, 2728-2735 (1996).
  10. Leahy, J. L., Cooper, H. E., Weir, G. C. Impaired insulin secretion associated with near normoglycemia. Study in normal rats with 96-h in vivo glucose infusions. Diabetes. 36, 459-464 (1987).
  11. Hager, S. R., Jochen, A. L., Kalkhoff, R. K. Insulin resistance in normal rats infused with glucose for 72 h. The American Journal of Physiology. 260, 353-362 (1991).
  12. Laybutt, D. R., Chisholm, D. J., Kraegen, E. W. Specific adaptations in muscle and adipose tissue in response to chronic systemic glucose oversupply in rats. The American Journal of Physiology. 273, E1-E9 (1997).
  13. Jonas, J. C., et al. High glucose stimulates early response gene c-Myc expression in rat pancreatic beta cells. The Journal of Biological Chemistry. 276, 35375-35381 (2001).
  14. Tang, C., et al. Glucose-induced beta cell dysfunction in vivo in rats: link between oxidative stress and endoplasmic reticulum stress. Diabetologia. 55, 1366-1379 (2012).
  15. Alonso, L. C., et al. Glucose infusion in mice: a new model to induce beta-cell replication. Diabetes. 56, 1792-1801 (2007).
  16. Magnan, C., Gilbert, M., Kahn, B. B. Chronic free fatty acid infusion in rats results in insulin resistance but no alteration in insulin-responsive glucose transporter levels in skeletal muscle. Lipids. 31, 1141-1149 (1996).
  17. Goh, T. T., et al. Lipid-induced beta-cell dysfunction in vivo in models of progressive beta-cell failure. Am. J. Physiol. Endocrinol. Metab. 292, 549-560 (2007).
  18. Pascoe, J., et al. Free fatty acids block glucose-induced beta-cell proliferation in mice by inducing cell cycle inhibitors p16 and p18. Diabetes. 61, 632-641 (2012).
  19. Bell, C. G., Walley, A. J., Froguel, P. The genetics of human obesity. Nature Reviews. Genetics. 6, 221-234 (2005).
  20. Fontes, G., Hagman, D. K., Latour, M. G., Semache, M., Poitout, V. Lack of preservation of insulin gene expression by a glucagon-like peptide 1 agonist or a dipeptidyl peptidase 4 inhibitor in an in vivo model of glucolipotoxicity. Diabetes Res. Clin. Pract. 87, 322-328 (2010).
  21. Crawford, P. A., Schaffer, J. E. Metabolic stress in the myocardium: Adaptations of gene expression. Journal of Molecular and Cellular Cardiology. , (2012).
  22. Kewalramani, G., Bilan, P. J., Klip, A. Muscle insulin resistance: assault by lipids, cytokines and local macrophages. Curr. Opin. Clin. Nutr. Metab Care. 13, 382-390 (2010).
  23. Cusi, K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis: pathophysiology and clinical implications. Gastroenterology. 142, 711-725 (2012).
check_url/fr/50267?article_type=t

Play Video

Citer Cet Article
Fergusson, G., Ethier, M., Zarrouki, B., Fontés, G., Poitout, V. A Model of Chronic Nutrient Infusion in the Rat. J. Vis. Exp. (78), e50267, doi:10.3791/50267 (2013).

View Video