Summary

生物医学植入物的石墨涂料

Published: March 01, 2013
doi:

Summary

石墨烯具有潜在的生物医学植入物的涂层材料。在这项研究中,我们展示了一个涂层镍钛记忆合金合金纳米厚的石墨层的方法,并确定如何石墨烯可能会影响植入物的反应。

Abstract

作为表面涂层​​具有原子级平滑的石墨烯的潜力,以改善植入物的性质。这表明涂层镍钛记忆合金合金作为支架材料的应用与纳米厚的石墨层的方法。石墨烯是通过化学气相沉积铜基板上生长,然后转印到镍钛合金基板。为了了解石墨烯涂层可以改变生物反应的大鼠主动脉内皮细胞和大鼠主动脉平滑肌细胞,细胞存活率的影响。此外,用荧光共焦显微镜检查细胞粘附和形态上的石墨烯涂层的效果。细胞进行染色,肌动蛋白和核,和原始的镍钛合金样品之间有明显的差异相比,石墨烯涂覆的样品。总大鼠主动脉平滑肌细胞的肌动蛋白表达被发现使用免疫印迹。蛋白质吸附特性,潜在的血栓形成的指标,WERE琼脂糖凝胶电泳血清白蛋白和纤维蛋白原。此外,纤维蛋白原的电荷转移到基板推导出了利用拉曼光谱。有人发现,石墨烯涂层的镍钛合金基板满足的支架材料的功能要求和改善的生物反应相比,未涂覆的镍钛合金。因此,石墨涂层镍钛记忆合金的支架材料是一个可行的候选人。

Introduction

过去三十年目睹发现的新型材料为基础的治疗和疾病的治疗和诊断设备。新型合金材料,例如镍钛合金(NiTi合金)和不锈钢通常用在生物医学植入物的制造,由于其优异的机械特性。1-3,但众多的挑战仍然由于外源性材料的细胞毒性,生物和血液相容性。的金属的性质,这些合金的结果较差的生物和血液相容性由于金属浸出,缺乏的细胞粘附,增殖,血栓形成,当涉及在流动的血液接触(如导管,血管移植物,血管支架,人工心脏瓣膜与植入物表面的蛋白质或活细胞 )。1,4,5的相互作用可导致强烈的生化反应的免疫学反应和随后的级联可能产生不利影响的移动设备的功能。因此,它被pertin耳鼻喉科在生物医学植入物和其周围的生物环境之间的相互作用来实现控制。通常采用的表面改性,以减少或防止不利的生理响应,源自植入材料。一个理想的表面涂层,预计有高的粘合强度,化学惰性,高平滑性,和良好的血液和生物相容性。在此之前,许多材料包括类金刚石碳(DLC),碳化硅,氮化钛,TiO 2和许多聚合物材料已被测试的生物相容的植入物表面涂层1,6-23然而,这些材料仍然无法满足所有一个合适的植入物表面涂层的功能标准。

发现SP 2,被称为石墨烯,碳原子厚的一层敞开了大门,为发展新型多功能材料。石墨烯是种植体表面涂层的,因为它是一个理想的候选人是化学惰性的,原子级平滑和高度耐用的。在这封信中,我们研究了石墨烯的可行性,为生物医学植入物的表面涂层。我们的研究表明,石墨涂层镍钛记忆合金(GR-镍)满足所有的功能标准,同时还支持优秀的平滑肌和内皮细胞的生长,导致细胞增殖,以更好地。我们还发现,血清白蛋白吸附在镍GR-高于纤维蛋白原。更重要的是,(i)本详细的光谱测量证实了缺乏表明,石墨涂层石墨,纤维蛋白原之间的电荷转移抑制血小板活化植入物,(ii)石墨烯的涂料不表现出任何重大的体外毒性内皮细胞和平滑肌细胞系的确认其生物相容性,及(iii)的石墨烯涂层是化学惰性的,耐用的和不可渗透的,在流动的血液环境。这些血液和生物相容性,随着高STrength,化学惰性和耐用性,使石墨烯作为一个理想的表面涂层涂料。

Protocol

1。石墨涂层的镍铜(Cu)的基板使用的化学气相沉积技术,在本研究中所用的石墨烯样品上生长,并随后将其转移至4.5毫米2 NiTi合金基板。 铜箔(1厘米×1厘米)被放置在一个1英寸的石英管式炉,和50sccm的H 2,450sccm的Ar的存在下,在加热到1000℃。 往下,甲烷(1和4 sccm的)引入炉中20-30分钟,在不同的流率。对样品进行了最终冷却至室温,在流动下的Ar和H <sub…

Representative Results

图1。)CVD法生长的多晶石墨在Cu箔模仿金属晶粒(比例尺:10微米)。 B)1的SCCM(4 SCCM)石墨烯的拉曼光谱显示了强烈的(相对较弱)G'带指示单层(数层)所制备的石墨烯的性质。三)转印到NiTi合金的石墨烯的AFM图像显示为〜5 nm的粗糙度。比例尺= 500纳米。 <p class="jove_content" fo:keep-together.within-page…

Discussion

生物相容性和细胞毒性:化学气相沉积(CVD)方法,得到多晶石墨烯样品,模仿铜的晶粒,如在图1a中所示。我们采用拉曼光谱,以确认存在的数层(单层)石墨烯1 SCCM(4 SCCM)样品( 见图1b)。很显然,1 sccm的(4 sccm)的样品表现出强烈的(相对较弱)G'带表示单层的(少数层)石墨烯。 图1c示出了在NiTi基板少数层石墨烯的原子力显微镜(AFM)图…

Divulgations

The authors have nothing to disclose.

Materials

Reagent
Dulbecco’s Modified Eagle Medium ATCC 30-2002
Thiazolyl blue tetrazolium bromide Sigma-Aldrich M2128
CellTiter 96 Aqueous One solution cell proliferation assay (MTS) Promega G3582
Dimethyl sulfoxide Sigma-Aldrich D8418
36.5% formaldehyde Sigma-Aldrich F8775
Triton X-100 Sigma-Aldrich T8787
Alexafluor 488 phalloidin Life Technologies A12379
VECTASHIELD mounting medium with DAPI Vector Laboratories H-1200
Human serum albumin Sigma-Aldrich A9511
Human fibrinogen
Tris/Glycine/SDS Bio-Rad 161-0732
Ready Gel Tris-HCl Gel Bio-Rad 161-1158
Acetic acid Sigma-Aldrich 45726
SYPRO Red Life Technologies S-6653
Protein low BCA assay Lamda Biotech G1003
Precision Plus Protein Kaleidoscope Standard Bio-Rad 161-0375
Immun-Blot PVDF membrane Bio-Rad 162-0177
Blotting grade blocker non-fat dry milk Bio-Rad 170-6404XTU
Anti-actin antibody produced in rabbit Sigma-Aldrich A2066
BM Chemiluminescence Western Blotting kit (mouse/rabbit) Roche Applied Science 11520709001
RIPA buffer Sigma-Aldrich R0278
NiTi (51% Ni, 49% Ti) Alfa-Aesar 44953
Equipment
Horiba JobinYvon Raman spectrometer Dilor XY 98
Nikon Confocal microscope Eclipse TI microscope
Thermoscientific Plate reader
Bio-Rad Power supply 164-5050 PowerPac basic power supply
Bio-Rad Electrophoresis cell 165-8004 Mini-PROTEAN tetra cell
Bio-Rad Gel holder cassette 170-3931 Mini gel holder cassette

References

  1. Roy, R. K., Lee, K. -. R. Biomedical applications of diamond-like carbon coatings: A review. Journal of Biomedical Materials Research Part B-Applied Biomaterials. 83 B (1), 72-84 (2007).
  2. Shah, A. K., Sinha, R. K., Hickok, N. J., Tuan, R. S. High-resolution morphometric analysis of human osteoblastic cell adhesion on clinically relevant orthopedic alloys. Bone. 24 (5), 499-506 (1999).
  3. Huang, N., Yang, P., Leng, Y. X., Chen, J. Y., Sun, H., Wang, J., Wang, G. J., Ding, P. D., Xi, T. F., Leng, Y. Hemocompatibility of titanium oxide films. Biomaterials. 24 (13), 2177-2187 (2003).
  4. Gutensohn, K., Beythien, C., Bau, J., Fenner, T., Grewe, P., Koester, R., Padmanaban, K., Kuehnl, P. In vitro analyses of diamond-like carbon coated stents: Reduction of metal ion release, platelet activation, and thrombogenicity. Thrombosis Research. 99 (6), 577-585 (2000).
  5. Gillespie, W. J., Frampton, C. M. A., Henderson, R. J., Ryan, P. M. The Incidence of Cancer Following Total Hip-Replacement. Journal of Bone and Joint Surgery-British Volume. 70 (4), 539-542 (1988).
  6. Sperling, C., Schweiss, R. B., Streller, U., Werner, C. In vitro hemocompatibility of self-assembled monolayers displaying various functional groups. Biomaterials. 26 (33), 6547-6557 (2005).
  7. Mikhalovska, L. I., Santin, M., Denyer, S. P., Lloyd, A. W., Teer, D. G., Field, S., Mikhalovsky, S. Fibrinogen adsorption and platelet adhesion to metal and carbon coatings. Thrombosis and Haemostasis. 92 (5), 1032-1039 (2004).
  8. Airoldi, F., Colombo, A., Tavano, D., Stankovic, G., Klugmann, S., Paolillo, V., Bonizzoni, E., Briguori, C., Carlino, M., Montorfano, M., Liistro, F., Castelli, A., Ferrari, A., Sgura, F., Mario, C. D. i. Comparison of diamond-like carbon-coated stents versus uncoated stainless steel stents in coronary artery disease. American Journal of Cardiology. 93 (4), 474-477 (2004).
  9. Allen, M., Myer, B., Rushton, N. In vitro and in vivo investigations into the biocompatibility of diamond-like carbon (DLC) coatings for orthopedic applications. Journal of Biomedical Materials Research. 58 (3), 319-328 (2001).
  10. Butter, R., Allen, M., Chandra, L., Lettington, A. H., Rushton, N. . In-vitro Studies of DLC Coatings with Silicon Intermediate Layer. Diamond and Related Materials. 4 (5-6), 857-861 (1995).
  11. Dearnaley, G., Arps, J. H. Biomedical applications of diamond-like carbon (DLC) coatings: A review. Surface & Coatings Technology. 200 (7), 2518-2524 (2005).
  12. Dorner-Reisel, A., Schurer, C., Nischan, C., Seidel, O., Muller, E. Diamond-like carbon: alteration of the biological acceptance due to Ca-O incorporation. Thin Solid Films. 420, 263-268 (2002).
  13. Dowling, D. P., Kola, P. V., Donnelly, K., Kelly, T. C., Brumitt, K., Lloyd, L., Eloy, R., Therin, M., Weill, N. Evaluation of diamond-like carbon-coated orthopaedic implants. Diamond and Related Materials. 6 (2-4), 390-393 (1997).
  14. Grill, A. Diamond-like carbon coatings as biocompatible materials – an overview. Diamond and Related Materials. 12 (2), 166-170 (2003).
  15. Hauert, R. A review of modified DLC coatings for biological applications. Diamond and Related Materials. 12 (3-7), 583-589 (2003).
  16. Windecker, S., Mayer, I., De Pasquale, G., Maier, W., Dirsch, O., De Groot, P., Wu, Y. P., Noll, G., Leskosek, B., Meier, B., Hess, O. M. Working Grp Novel Surface, C., Stent coating with titanium-nitride-oxide for reduction of neointimal hyperplasia. Circulation. 104 (8), 928-933 (2001).
  17. Zhang, F., Zheng, Z. H., Chen, Y., Liu, X. G., Chen, A. Q., Jiang, Z. B. In vivo investigation of blood compatibility of titanium oxide films. Journal of Biomedical Materials Research. 42 (1), 128-133 (1998).
  18. Bolz, A., Schaldach, M. Artificial-Heart Valves – Improved Blood Compatibility By PECVD a-SiC-H COATING. Artificial Organs. 14 (4), 260-269 (1990).
  19. Haude, M., Konorza, T. F. M., Kalnins, U., Erglis, A., Saunamaki, K., Glogar, H. D., Grube, E., Gil, R., Serra, A., Richardt, H. G., Sick, P., Erbel, R., Invest, C. T. Heparin-coated stent placement for the treatment of stenoses in small coronary arteries of symptomatic patients. Circulation. 107 (9), 1265-1270 (2003).
  20. Suggs, L. J., Shive, M. S., Garcia, C. A., Anderson, J. M., Mikos, A. G. In vitro cytotoxicity and in vivo biocompatibility of poly(propylene fumarate-co-ethylene glycol) hydrogels. Journal of Biomedical Materials Research. 46 (1), 22-32 (1999).
  21. Clarotti, G., Schue, F., Sledz, J., Benaoumar, A. A., Geckeler, K. E., Orsetti, A., Paleirac, G. Modification of the biocompatible and haemocompatible properties of polymer substrates by plasma-deposited fluorocarbon coatings. Biomaterials. 13 (12), 832-840 (1992).
  22. Gombotz, W. R., Guanghui, W., Horbett, T. A., Hoffman, A. S. Protein adsorption to poly(ethylene oxide) surfaces. Journal of Biomedical Materials Research. 25 (12), 1547-1562 (1991).
  23. Ishihara, K., Fukumoto, K., Iwasaki, Y., Nakabayashi, N. Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2. Protein adsorption and platelet adhesion. Biomaterials. 20 (17), 1553-1559 (1999).
  24. Jung, N., Kim, B., Crowther, A. C., Kim, N., Nuckolls, C., Brus, L. Optical Reflectivity and Raman Scattering in Few-Layer-Thick Graphene Highly Doped by K and Rb. ACS Nano. 5 (7), 5708-5716 (2011).
  25. Rao, A. M., Eklund, P. C., Bandow, S., Thess, A., Smalley, R. E. Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature. 388 (6639), 257-259 (1997).
  26. Bunch, J. S., Verbridge, S. S., Alden, J. S., vander Zande, A. M., Parpia, J. M., Craighead, H. G., McEuen, P. L. Impermeable atomic membranes from graphene sheets. Nano Letters. 8 (8), 2458-2462 (2008).
  27. Chen, S., Brown, L., Levendorf, M., Cai, W., Ju, S. -. Y., Edgeworth, J., Li, X., Magnuson, C. W., Velamakanni, A., Piner, R. D., Kang, J., Park, J., Ruoff, R. S. Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy. Acs Nano. 5 (2), 1321-1327 (2011).
check_url/fr/50276?article_type=t

Play Video

Citer Cet Article
Podila, R., Moore, T., Alexis, F., Rao, A. Graphene Coatings for Biomedical Implants. J. Vis. Exp. (73), e50276, doi:10.3791/50276 (2013).

View Video