Summary

Selektiv Tracing af Auditive fibre i de Avian embryoer Vestibulocochlear Nerve

Published: March 18, 2013
doi:

Summary

Her beskriver vi en mikrodissektion teknik efterfulgt af fluorescerende farvestof injektion i den akustiske ganglion af tidlige kyllingefostre til selektiv sporing af auditive axon fibre i nerve-og baghjernen.

Abstract

Den embryoniske kylling er en udbredt model til undersøgelsen af ​​perifere og centrale gangliecelle fremspring. I høresystemet, vil selektiv mærkning af auditive axoner inden for VIIIth kranienerve øge studiet af centrale auditive kredsløb udvikling. Denne fremgangsmåde er udfordrende, fordi multiple sanseorganer i det indre øre bidrage til VIIIth nerve 1. Desuden markører, der pålideligt skelne auditive versus vestibulære grupper af axoner i den aviær VIIIth nerve er endnu ikke identificeret. Auditive og vestibulære veje kan ikke skelnes funktionelt i tidlige embryoner, som sensorisk-fremkaldte responser ikke er til stede før kredsløb formes. Centralt fremspringende VIIIth nerveaxoner er blevet sporet i nogle undersøgelser, men auditive axon mærkning blev ledsaget af mærkning fra andre VIIIth nerve-komponenter 2,3. Her beskriver vi en fremgangsmåde til anterograd sporing fra den akustiske ganglion til selektivt Label auditive axoner inden for udvikling VIIIth nerve. Først efter delvis dissektion af den forreste cephalic region af en 8-dages kyllingeembryo nedsænket i oxygeneret kunstig cerebrospinalvæske, er ductus cochlearis identificeret ved anatomiske kendetegn. Dernæst er et fint trukket glas mikropipette anbragt til at injicere en lille mængde rhodamin dextran amin ind i kanalen og tilstødende dybe område, hvor de akustiske ganglieceller er placeret. Inden for 30 minutter efter injektion auditive axoner spores centralt i baghjerne, og senere kan visualiseres efter histologisk præparat. Denne metode giver et nyttigt redskab for udviklingsmæssige undersøgelser af perifer til central auditive kredsløb dannelse.

Protocol

1. Lav følgende Dissektionsværktøj og reagenser Kunstig cerebrospinalvæske (aCSF; 130 mM NaCI, 3 mM KCI, 1,2 mM KH 2 PO 4, 20 mM NaHCO3, 3 mM HEPES, 10 mM glucose, 2 mM CaCl2, 1,3 mM MgSO4) kontinuerligt infuseret med 95% O 2/5% CO2 ved stuetemperatur. Til infusion, fyldes til 2/3 a 500 ml bredhalset Nalgene krukke med et hul boret i låget. Tank vil være fastgjort ved hjælp af rør til et glas stamceller bobleapparat, som trænger ind i …

Representative Results

Komponenterne i VIIIth nerve og anatomien af nerven selv er komplekse og indviklede (figur 1, 3). Ved selektivt at spore fibre som følge af akustiske ganglieceller, kan segmenter af VIIIth nerve samt primære auditive afferenter i hjernestammen omhyggelig spores og skelnes fra de vestibulære modstykker (figur 2, 3). Ligeledes kunne denne teknik anvendes til at undersøge perifere fremspring af de akustiske ganglieceller (figur 3G), eller modificeret for at studere fre…

Discussion

Undersøgelser af den tidlige udvikling af VIIIth nerve har været begrænset til dels på grund af vanskelighederne med at identificere embryonale axoner som følge af flere særskilte ganglier. Adskillige undersøgelser har udforsket de molekylære signaler vejledende auditiv og vestibulær sensorisk celle og ganglion celleskæbner under den tidlige udvikling, 5,11,12, men de processer, der regulerer central innervation er endnu ikke fastlagt. Rapporter om akustiske gangliecelle fremskrivninger typisk beskr…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Forfatterne vil gerne takke Dr. Candace Hsieh for forslag og hjælp med billeddiagnostiske teknikker og Dr. Doris Wu for ekspertise på chick indre øre anatomi under tidlig embryogenese. Dette arbejde blev støttet af NSF IOS-0642346, NIH T32-DC010775, NIH T32-GM008620, NIH R01-DC010796, og DOE GAANN P200A120165.

Materials

Name of Reagent/Material Company Catalog Number Comments
Polystyrene Weigh Dish Fisher Scientific 02-202-101
Petri Dish, 35 X 10 mm Fisher Scientific 50820644 Use to make silicone dissection dish
Sylgard Silicone Elastomer Kit World Precision Instruments SYLG184 Coat Petri to make dissection dish
Dissection Pins Various Holds embryo in place during dissection
NaCL Various part of aCSF recipe
KCl Various part of aCSF recipe
KH2PO4 Various part of aCSF recipe
NaHCO3 Various part of aCSF recipe
Glucose Various part of aCSF recipe
CaCl2 Various part of aCSF recipe
MgSO4 Various part of aCSF recipe
Container for aCSF. Suggest translucent wide-mouth Nalgene jar, 500 ml (16 oz) with lid. CPLabSafety QP-PLC-03717 Drill hole opening in top of lid for glass bubling stem to penetrate liquid
Empty 5 ml glass vial or comparable transparent vial American Pharmaceutical Partners, Inc 6332300105 Use during aCSF incubation to keep samples separate from each other and from the bubbling stream
Tank of carbogen (95%O2 / 5%CO2) connected by tubing to bubbler Various Attach by tubing to glass stem bubbler for infusion into aCSF
Glass stem bubbler Various To infuse carbogen into aCSF
Curved-tip forceps World Precision Instruments 501008 To remove embryo head from egg
Two fine-tip forceps World Precision Instruments 501985 For micro-dissection
50 ml Beaker various
Rhodamine Dextran Amine (RDA) Invitrogen various Fluorescent axon tracer
Triton X-100 ICN Biomedicals
Phosphate Buffered Saline, (1X PBS) Various Standard lab reagent
Thin Wall Glass Capillaries, 1.2 OD, .9 ID 4″ (100 mm) length World Precision Instruments TW120F-4 Load with RDA. Each capillary makes two glass micropipettes
Needle / Pipette puller David Kopf Instruments Model 720 Settings used: Heat 16.4, Solenoid 2.2
Picospritzer Parker Instrumentation various Attach by fine tubing to glass micropipette
Micromanipulator Narishige various
Dissection microscope with fluorescence Various
4% Paraformaldehyde Various Standard lab reagent
anti-Neurofilament antibody, optional Millipore AB1991 Follow histological protocol recommended by manufacturer
Cryostat and associated materials for sectioning Leica various
Epifluorescent microscope for imaging Zeiss, various

References

  1. Groves, A. K., Fekete, D. M. Shaping sound in space: the regulation of inner ear patterning. Development. 139, 245-257 (2012).
  2. Pflieger, J. F., Cabana, T. The vestibular primary afferents and the vestibulospinal projections in the developing and adult opossum, Monodelphis domestica. Anatomy and Embryology. 194, 75-88 (1996).
  3. Molea, D., Rubel, E. W. Timing and topography of nucleus magnocellularis innervation by the cochlear ganglion. The Journal of Comparative Neurology. 466, 577-591 (2003).
  4. Bissonnette, J. P., Fekete, D. M. Standard atlas of the gross anatomy of the developing inner ear of the chicken. The Journal of Comparative Neurology. 368, 620-630 (1996).
  5. Brigande, J. V., Kiernan, A. E., Gao, X., Iten, L. E., Fekete, D. M. Molecular genetics of pattern formation in the inner ear: do compartment boundaries play a role. Proceedings of the National Academy of Sciences of the United States of America. 97, 11700-11706 (1073).
  6. Bellairs, R., Osmond, M. . The atlas of chick development. , (2005).
  7. Manley, G. A., Haeseler, C., Brix, J. Innervation patterns and spontaneous activity of afferent fibres to the lagenar macula and apical basilar papilla of the chick’s cochlea. Hearing Research. 56, 211-226 (1991).
  8. Code, R. A. Efferent neurons to the macular lagena in the embryonic chick. Hearing Research. 82, 26-30 (1995).
  9. Maklad, A., Fritzsch, B. Development of vestibular afferent projections into the hindbrain and their central targets. Brain Research Bulletin. 60, 497-510 (2003).
  10. Rubel, E. W., Fritzsch, B. Auditory system development: primary auditory neurons and their targets. Annual Review of Neuroscience. 25, 51-101 (2002).
  11. Satoh, T., Fekete, D. M. Lineage analysis of inner ear cells using genomic tags for clonal identification. Methods Mol. Biol. 493, 47-63 (2009).
  12. Bok, J., Chang, W., Wu, D. K. Patterning and morphogenesis of the vertebrate inner ear. The International Journal of Developmental Biology. 51, 521-533 (2007).
  13. Appler, J. M., Goodrich, L. V. Connecting the ear to the brain: Molecular mechanisms of auditory circuit assembly. Progress in Neurobiology. 93, 488-508 (2011).
  14. Bulankina, A. V., Moser, T. Neural circuit development in the mammalian cochlea. Physiology (Bethesda). 27, 100-112 (2012).
  15. Fekete, D. M., Campero, A. M. Axon guidance in the inner ear. The International Journal of Developmental Biology. 51, 549-556 (2007).
  16. Momose-Sato, Y., Glover, J. C., Sato, K. Development of functional synaptic connections in the auditory system visualized with optical recording: afferent-evoked activity is present from early stages. Journal of Neurophysiology. 96, 1949-1962 (2006).
  17. Marrs, G. S., Spirou, G. A. Embryonic assembly of auditory circuits: spiral ganglion and brainstem. The Journal of Physiology. 590, 2391-2408 (2012).
  18. Milo, M., et al. Genomic analysis of the function of the transcription factor gata3 during development of the mammalian inner ear. PloS One. 4, e7144 (2009).
  19. Fritzsch, B., Eberl, D. F., Beisel, K. W. The role of bHLH genes in ear development and evolution: revisiting a 10-year-old hypothesis. Cellular and Molecular Life Sciences : CMLS. 67, 3089-3099 (2010).
  20. Jahan, I., Kersigo, J., Pan, N., Fritzsch, B. Neurod1 regulates survival and formation of connections in mouse ear and brain. Cell and Tissue Research. 341, 95-110 (2010).
  21. Huang, E. J., et al. Brn3a is a transcriptional regulator of soma size, target field innervation and axon pathfinding of inner ear sensory neurons. Development. 128, 2421-2432 (2001).
  22. Jones, J. M., Warchol, M. E. Expression of the Gata3 transcription factor in the acoustic ganglion of the developing avian inner ear. The Journal of Comparative Neurology. 516, 507-518 (2009).
  23. Lu, C. C., Appler, J. M., Houseman, E. A., Goodrich, L. V. Developmental profiling of spiral ganglion neurons reveals insights into auditory circuit assembly. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 31, 10903-10918 (2011).
check_url/fr/50305?article_type=t

Play Video

Citer Cet Article
Allen-Sharpley, M. R., Tjia, M., Cramer, K. S. Selective Tracing of Auditory Fibers in the Avian Embryonic Vestibulocochlear Nerve. J. Vis. Exp. (73), e50305, doi:10.3791/50305 (2013).

View Video