Summary

药物输送到微型计算机断层扫描成像缺血后肢血管灌注与微滤渗透

Published: June 29, 2013
doi:

Summary

我们在这里展示的<em>在体内</em>插入渗透泵恒定的局部给药和后肢缺血小鼠模型中创建。此外,后肢血管灌流微滤,硅不透X线剂,准备为微型计算机断层扫描(微CT)成像。

Abstract

外周动脉疾病的动物模型的临床前研究,在测试旨在刺激微循环的治疗药物的疗效起着至关重要的作用。发送方法的选择对这些药物的给药途径是非常重要的,因为这些药物的1,2深刻地影响着生物活性和疗效。在这篇文章中,我们将演示如何在本地使用插管的渗透泵服用一种物质,在缺血后肢。此泵可输送的配发的时间内将固定体积的水溶液,连续。我们也提出我们的普通股动脉,股深的起源和腹壁动脉,左后肢近端结扎单侧肢体缺血诱导的小鼠模型。最后,我们描述了在体内的插管和微滤,不透射线的聚硅氧烷铸件剂的腹主动脉和灌注的后肢血管结扎。微滤灌注填满整个血管床(动脉和静脉),因为我们已经退出结扎大血管导管,代理可以保留在血管未来体外成像小标本采用显微CT 3

Introduction

外周动脉疾病(PAD)是动脉粥样硬化的疾病,它引起在腿部4供血不足。它影响到8万至12万美国人,目前的医疗只能提供有限的救济5,6。改善腿部血液循环的新的治疗药物,不仅会抑制疾病的进展,但也提高生活质量。 PAD的发病率较高,50岁以上的人,所以当地的药物治疗是一种较为理想的治疗方式,因为减少的肾脏和肝功能经常出现在老年患者,可降低全身用药的药物代谢和增加副作用。

因此,我们创建了一个鼠标垫检查是否减轻局部给药制剂通过促进血管生成和血管重塑后肢缺血模型。具体而言,我们使用一个插管的渗透泵连续提供的治疗剂缺血小鼠大腿肌肉。使用我们的输送系统,我们可以在本地环境中,以保持最佳的药物浓度,这种方法允许适当的药物活性,避免了可能出现的全身性副作用,克服有限的局部药物接入与全身用药的缺点。此外,评估局部给药制剂是否促进血运重建,我们采用先进的铸造和高清晰度成像技术,使微血管变化的定量分析。总的来说,使用相结合的方法,在这个视频文章是有用的临床前研究,以帮助了解药物诱导的心肌血运重建术在PAD患者7-9。

Protocol

1。渗透泵灌注准备泵时使用无菌技术( 如手套,层流罩)。从包装中取出泵和流量调节剂。称量空泵和记录的重量(mg)。 慢慢地注入泵,避免产生气泡,1cc的注射器用一个小钝头27G填充管。当溶液达到泵的顶部,停止填充。 擦去多余的解决方案和权衡填充泵。适合于大多数水溶液,重量以mg微升的体积相同。在空对填充重量的差异应该是90%以上的规定的平均填充?…

Representative Results

动画演示渗透泵插入和后肢缺血手术在协议中详细说明。 图1显示了激光多普勒图像后肢灌注,缺血确认。与微滤血管铸型后,一个三维显微CT图像的血管网显示,微滤可以有效地填补船舶( 图2A),但不连续性可能会发生( 图2B)由于各种程序的因素( 例如 ,气泡,缺乏压力,粘度,微滤)。 动画传奇鼠标放置在俯卧位?…

Discussion

在这里,我们提出了一个方法渗透药物/物质后肢缺血小鼠模型的交付。此外,我们描述了一个铸造技术,其中我们已经使用微滤产生三维重建血管网的分析。

的水平或缺血严重程度不同,根据由动脉结扎/切除。我们创建了一个双重结扎股动脉近端股深和腹壁动脉的起源,这种方法可以产生更严重的缺血后肢远端。手术后一定要留意动物,并提供由当地镇痛药缓解疼痛。此外…

Divulgations

The authors have nothing to disclose.

Acknowledgements

笔者想感谢他的技术援助与显微CT成像,爱德华TH叶MD,手术援助,丽贝卡·巴托博士MD安德森小动物成像设备的基思·米歇尔,社论援助。部分支持这项工作是由美国心脏协会。

Materials

Reagent/Material
Surgical tools Fine Science Tools Type: Tool
Puritan sterile cotton swabs Fisher Scientific 22-029-499 Type: Tool
Betadine (povidone-iodine) Fisher Scientific 19-065534 Type: Reagent
70% Alcohol pads Fisher Scientific NC9926371 Type: Reagent
Phosphate buffered saline Lonza 17-516F Type: Reagent
6-0 prolene suture Cardinal Health 8709 Type: Tool
8-0 prolene suture Cardinal Health 2775 Type: Tool
Depilatory cream Nair Type: Tool
Osmotic pump ALZET 1002 Type: Tool, 14 day release
Vinyl catheter ALZET 7760 Type: Tool
Heparinized saline (0.9%) Baxter 2B0944 Type: Reagent
Neutral buffered formalin Richard-Allan Scientific 5705 Type: Reagent
Microfil (silicone rubber contrast agent) Flowtech MV-112 Type Reagent, Microfil White
Cal-Ex II (formic acid solution) Fisher Scientific CS511-1D Type: Reagent
Buprenex CIII 7571 Type: Analgesic
Bupivicaine Hospira, Inc. 381 Type: Analgesic
Equipment
Dissecting microscope Carl Zeiss Microimaging Zeiss Stemi 2000-C Type:Equipment
Laser Doppler perfusion imager Perimed Inc. Periscan PIM3 Type:Equipment
Micro-CT imaging system GE Healthcare Explore Locus SP Type:Equipment

References

  1. Epstein, S. E., Fuchs, S., Zhou, Y. F., Baffour, R., Kornowski, R. Therapeutic interventions for enhancing collateral development by administration of growth factors: basic principles, early results and potential hazards. Cardiovasc. Res. 49, 532-542 (2001).
  2. Esaki, J., Marui, A., Tabata, Y., Komeda, M. Controlled release systems of angiogenic growth factors for cardiovascular diseases. Expert Opin. Drug Deliv. 4, 635-649 (2007).
  3. Bentley, M. D., Ortiz, M. C., Ritman, E. L., Romero, J. C. The use of microcomputed tomography to study microvasculature in small rodents. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, 1267-1279 (2002).
  4. Golomb, B. A., Dang, T. T., Criqui, M. H. Peripheral arterial disease: morbidity and mortality implications. Circulation. 114, 688-699 (2006).
  5. Hiatt, W. R. Pharmacologic therapy for peripheral arterial disease and claudication. J. Vasc. Surg. 36, 1283-1291 (2002).
  6. Hirsch, A. T., et al. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA. 286, 1317-1324 (2001).
  7. McDonald, D. M., Choyke, P. L. Imaging of angiogenesis: from microscope to clinic. Nat. Med. 9, 713-725 (2003).
  8. Hirsch, A. T., et al. ACC/AHA Guidelines for the Management of Patients with Peripheral Arterial Disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Associations for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (writing committee to develop guidelines for the management of patients with peripheral arterial disease)–summary of recommendations. J. Vasc. Interv. Radiol. 17, 1383-1397 (2006).
  9. Zagorchev, L., Mulligan-Kehoe, M. J. Molecular imaging of vessels in mouse models of disease. Eur. J. Radiol. 70, 305-311 (2009).
  10. Losordo, D. W., Dimmeler, S. Therapeutic angiogenesis and vasculogenesis for ischemic disease. Part I: angiogenic cytokines. Circulation. 109, 2487-2491 (2004).
  11. Waters, R. E., Terjung, R. L., Peters, K. G., Annex, B. H. Preclinical models of human peripheral arterial occlusive disease: implications for investigation of therapeutic agents. J. Appl. Physiol. 97, 773-780 (2004).
check_url/fr/50364?article_type=t

Play Video

Citer Cet Article
Liu, X., Terry, T., Pan, S., Yang, Z., Willerson, J. T., Dixon, R. A. F., Liu, Q. Osmotic Drug Delivery to Ischemic Hindlimbs and Perfusion of Vasculature with Microfil for Micro-Computed Tomography Imaging. J. Vis. Exp. (76), e50364, doi:10.3791/50364 (2013).

View Video