Summary

昆虫飛翔挙動監視のための早期変成挿入技術

Published: July 12, 2014
doi:

Summary

We present a novel surgical procedure to implant electrodes in Manduca sexta during its early metamorphic stages. This technique allows mechanically stable and electrically reliable coupling with the neuromuscular tissue to study flight neurophysiology dynamics. We also present a novel magnetic levitation platform for tethered studies of insect yaw.

Abstract

Early Metamorphosis Insertion Technology (EMIT) is a novel methodology for integrating microfabricated neuromuscular recording and actuation platforms on insects during their metamorphic development. Here, the implants are fused within the structure and function of the neuromuscular system as a result of metamorphic tissue remaking. The implants emerge with the insect where the development of tissue around the electronics during pupal development results in a bioelectrically and biomechanically enhanced tissue interface. This relatively more reliable and stable interface would be beneficial for many researchers exploring the neural basis of the insect locomotion with alleviated traumatic effects caused during adult stage insertions. In this article, we implant our electrodes into the indirect flight muscles of Manduca sexta. Located in the dorsal-thorax, these main flight powering dorsoventral and dorsolongitudinal muscles actuate the wings and supply the mechanical power for up and down strokes. Relative contraction of these two muscle groups has been under investigation to explore how the yaw maneuver is neurophysiologically coordinated. To characterize the flight dynamics, insects are often tethered with wires and their flight is recorded with digital cameras. We also developed a novel way to tether Manduca sexta on a magnetically levitating frame where the insect is connected to a commercially available wireless neural amplifier. This set up can be used to limit the degree of freedom to yawing “only” while transmitting the related electromyography signals from dorsoventral and dorsolongitudinal muscle groups.

Introduction

でも、遠隔測定記録用途のための昆虫に取り付けられた電子システムと、電極を挿入する、自然の飛行1の間にどのように神経系の機能を理解するための主要な方法であった。昆虫人工システムを取り付けるか、注入する昆虫の自然な飛行を邪魔する可能性が関与する多くの課題を提起しました。大人の昆虫に表面的な添付ファイルまたは人工的なプラットフォームの外科的挿入は、体内に誘導される慣性やストレス力によって引き起こさ挿入デバイスの可能性のあるシフトに信頼性がない。表面的に取り付けられるか、または外科的に挿入された電極は、異物などの昆虫によって拒否されやすい。さらに、注入作業は、外骨格の周りのスケールと杭の除去を必要とする。厚いクチクラ層はまた、それにより、昆虫の自然な飛行を妨害する、側副組織損傷を引き起こす可能性の外科神経支配のために貫通する必要がある。すべてのTヘセ要因は、外科的または表面的な移植手術に挑戦し、繊細なタスクにすることができます。外部から昆虫への制御およびセンシングシステムを取り付けるに関わるこれらの懸念を緩和するために、変成成長が関与する新たな方法論は、この資料に記載されます。

完全変態の昆虫の変成岩開発は中間蛹( 図1)を有する成人に幼虫(またはニンフ)の転換から始まります。変態プロセスは改造が続く変性症を含む広範な組織再プログラミングを必要とする。この変換は、いくつかの複雑な動作を2,3を実証昆虫大人まで地上波幼虫をオンにします。

手術が早期変成段階4,5の間に実行された場所、極端並体結合手術後の昆虫の生存が実証されている。これらの手術では、発達組織発生のコーエド外科的創傷は、より短い期間で修復することができる。導電性電極の注入は変成成長の初期段階(図1)中に実行された場合、これらの観​​察に続いて、新たな技術が開発されている。これは昆虫の6に生体力学的に確実な取り付けを可能にします。信頼性の高いインタフェースは、昆虫の神経および神経筋システム7で固定されています。この技術は「早期変態挿入技術」(EMIT)8として知られています。

全体組織系の再構築後、蛹に挿入された構造は、大人の昆虫で出現する。飛翔筋群は、総胸部体重の65%を構成すると、このように、EMIT手順9には比較的便利なターゲットである。基本的なウイングビートの間に、dorsolongitudinal(DL)を給電する飛行形態の変化と背腹は(DV)の筋肉は翼articulatを引き起こすリフト10を生成するイオンのジオメトリ。したがって、DLDVの筋肉の機能調整は飛行神経生理学の下で活発な研究話題となっている。電子的にプログラムされた視覚的な環境でのテザリングの昆虫は、複雑な運動器官の行動11,12の神経生理学を研究するための最も一般的な方法であった。発光ダイオードパネルからなる円筒状の競技場は、フライング昆虫が真ん中に係留され、動きが動的に周囲のパノラマの視覚表示を更新することによってシミュレートされ、これらの仮想現実環境のために使用されてきた。このような果実ショウジョウバエフライ小さく昆虫の場合、テザリングは、昆虫の背側胸部に金属ピンを装着すると、永久磁石13,14の下にピンを配置することによって達成される。この方法は、任意の電気生理学的解析することなく、高速カメラで目視観察を介してモータ応答の定量を可能にする。また、このメタODはたばこスズメガの大きく重い身体を一時停止するのは非効率となっている。この問題を解決するために、我々はそれらの底部に取り付けられた磁石を備えた軽量フレームは、電磁力によって浮上される磁気浮上フレームから恩恵。市販の神経アンプとLEDアレイと組み合わせると、これは飛行モータ出力を制御し、 たばこスズメガの関連電気生理学を記録するためのプラットフォームを提供します。

Protocol

注:プロトコルに従うために必要な材料および試薬のソースは、以下の「試薬」の表に記載されている。 1。記録電極接続用のプリント基板(PCB類)の製造 NOTE:実用的な実験手順を提供するために、ワイヤ電極は、FFC(フレキシブルフラットケーブル)コネクタにこれらの電極を挿入するためにPCBに半田付けされている。 銅張積層板の0.5×5?…

Representative Results

全体的なEMIT手順の概略を、スズメガの変成サイクルにおける主要な段階及び対応する電極挿入工程を示す、 図1に示されている。電極挿入は、4〜7日羽化前後半蛹の段階で実行する必要があります。これは筋線維は、電極の周りに開発し、昆虫にインプラントを固定することができます。 二つの活性電極および接地電極が挿入された完成した後期蛹挿入の典?…

Discussion

プロトコルの後の手順でデータを記録する能力に影響を与える記録電極の外科的挿入中のいくつかの重要なステップがあります。記録電極は、その背側の翼スポットを発揮した後に蛹1日の中に挿入する必要があります。挿入が2日以上、この時間が経過した後に実行されている場合は、昆虫の組織は周りの開発および挿入された電極を安定させるのに十分な時間がありません。これは、成人?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

ABは感謝(1245680)サイバー物理システムプログラム(1239243)の下で、および課学部教育の資金調達のための国立科学財団を承認する。この作業の初期段階を支援するための国防高等研究計画局(DARPA)。この作業の初期段階は、コーネル大学で教授アミット·ラルの研究室でABが実施された。その段階で、実験指導やアイデア生成のためのAB感謝Ayesaシンハ教授ラル。 たばこスズメガ (リンネ1763)はデューク大学、ノースカロライナ州ダラム、米国での生物学教室によって維持コロニーから入手した。蛾は羽化後5日以内に使用した。我々は彼らのNeurowareシステムのその優れた技術支援との使用のためにトライアングルバイオシステムズ·インターナショナル、特にデビッドJuranasとケイティミレーに感謝したいと思います。また、実験中に彼の助けのためにウィル·Caffeyに感謝したいと思います。

Materials

Coated stainless steel wire A-M Systems 791900 0.008’’ bare, 0.011’’ coated, annealed
Flexible electrode wire Litz or inductor wire can be used. 
Surface-mount FFC connector Hirose Connector FH28E-20S-0.5SH(05)
Tweezers Grobet USA N/A Clean with 70% alcohol before use on the insect.
Kim-Wipes Kimberly-Clark Worldwide 34155 Any size delicate-wipe tissues can be used.
Teflon tape N/A N/A 5 mm width Teflon tape.
Hypodermic Needle Becton Dickinson & Co. 30511 20-30 gauge hypodermic needle can be used. Video showed 30 gauge.
Rigid Fixation Stick N/A N/A Variety of materials can be used (e.g. coffee stirrers)
Insect Emergence Cage N/A N/A Plastic pet cage lined with packing paper or similar padding. Ventilation holes are needed.
Thermal Cauterizer Advanced Meditech International CH-HI CT2103 (tip) Optional equipment used for application of dental wax.
Dental Wax Orthomechanics LC., Broken Arrow, Oklahoma N/A Optional material used for stabilizing the electrodes on the insect.
Magnetic Levitation Platform N/A N/A Custom designed frame fabricated in-house with 3D prototyping
CA40 Instant Adhesive 3M 62-3803-0330-5 Avoid skin contact. Use gloves when handling.
70% Isopropyl alcohol store brand Commercially available from many suppliers.
PCB Etchant RadioShack 276-1535 Toxic if swallowed or ingested, skin irritant 
EQUIPMENT:
Name of Reagent/Material Company Catalog Number Comments
TBSI Neuroware Software Triangle Biosystems International N/A NeuroWare v1.4. Software for importing .nex files obtained at Technologies, N. NeuroExplorer Code and Scripts. (2012).at http://www.neuroexplorer.com/code.html
TBSI Wireless Recording System Triangle Biosystems International W5 FI USB Base station, headstage unit, charger
16 Channel Amplifier A-C Amplifier A-M Systems  950000 Model 3500 (110 V)
Oscilloscope  Agilent Technologies  DSO1014A Oscilloscope, 100 MHz, 4 channel
Microscope N/A N/A 5x magnification microscope to assist visualization during electronics construction. 
Ultrasonic Cleaner ColeParmer EW-08848-10 Ultrasonic Cleaner with Timer, 

References

  1. Taubes, G. Biologists and engineers create a new generation of robotics that imitate life. Science. 288 (7), 80-83 (2000).
  2. Duch, C., Bayline, R. J., Levine, R. B. Postembryonic development of the dorsal longitudinal flight muscle and its innervation in Manduca sexta. Journal of Comparative Neurology. 422 (1), 1-17 (2000).
  3. Levine, R. B., Morton, D. B., Restifo, L. L. Remodeling of the insect nervous system. Current opinion in neurobiology. 5 (1), 28-35 (1995).
  4. Williams, C. M. Physiology of insect diapause: the role of the brain in the production and termination of pupal dormancy in the giant silkworm Platysamia cecropia. Bio. Bull. 90, 234-243 (1946).
  5. Williams, C. M. The juvenile hormone. II. Its role in the endocrine control of molting, pupation, and adult development in the Cecropia silkworm. Bio. Bull. 121, 572-585 (1961).
  6. Bozkurt, A., Lal, A., Gilmour, R. Radio control of insects for biobotic domestication. 4th International IEEE/EMBS Conference on Neural Engineering. , 215-218 (2009).
  7. Bozkurt, A., Gilmour, R. F., Lal, A. In vivo electrochemical characterization of a tissue–electrode interface during metamorphic growth. IEEE Transactions on Biomedical Engineering. 58 (8), 2401-2406 (2011).
  8. Bozkurt, A., Gilmour, R. F., Lal, A. Insect–machine interface based neurocybernetics. IEEE Transactions on Biomedical Engineering. 56 (6), 1727-1733 (2009).
  9. Chapman, R. F. . The Insects: Structure and Function. , (1998).
  10. Eaton, J. L. Morphology of the head and thorax of the adult tobacco hornworm, Manduca sexta (Lepidoptera:Sphingidae). I. Skeleton and muscles. Annals of the Entomological Society of America. 64, 437-445 (1971).
  11. Resier, M. B., Dickinson, M. H. A modular display system for insect behavioral neuroscience. Journal of Neuroscience Methods. 167 (2), 127-139 (2008).
  12. Dombeck, D. A., Reiser, M. B. Real neuroscience in virtual worlds. Current opinion in neurobiology. 22 (1), 3-10 (2011).
  13. Weir, P. T., Dickinson, M. H. Flying drosophila orient to sky polarization. Current Biology. 22 (1), 21-27 (2012).
  14. Ristroph, L., Bergou, A. J., et al. Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles. Proceedings of the National Academy of Sciences. 107 (11), 4820-4824 (2010).
  15. Strauss, R., Schuster, S., Götz, K. G. Processing of artificial visual feedback in the walking fruit fly Drosophila melanogaster. The Journal of experimental biology. 20 (9), 1281-1296 (1997).
  16. Lindemann, J., Kern, R., Michaelis, C., Meyer, P., van Hateren, J., Egelhaaf, M. FliMax, a novel stimulus device for panoramic and highspeed presentation of behaviourally generated optic flow. Vision Research. 43 (7), 779-791 (2003).
  17. Reiser, M. B., Dickinson, M. H. A modular display system for insect behavioral neuroscience. Journal of neuroscience methods. 167 (2), 127-139 (2008).
  18. Bozkurt, A., Gilmour, R. F., Lal, A. Balloon-assisted flight of radio-controlled insect biobots. IEEE Transactions on Biomedical Engineering. 56 (9), 2304-2307 (2009).
check_url/fr/50901?article_type=t

Play Video

Citer Cet Article
Verderber, A., McKnight, M., Bozkurt, A. Early Metamorphic Insertion Technology for Insect Flight Behavior Monitoring. J. Vis. Exp. (89), e50901, doi:10.3791/50901 (2014).

View Video