Summary

视网膜神经节细胞逆行标记的成年斑马鱼与荧光染料

Published: May 03, 2014
doi:

Summary

We introduce an efficient method to retrograde label retinal ganglion cells (RGCs) in adult zebrafish.

Abstract

由于逆行标记视网膜神经节细胞(RGC的)可以从死亡地点隔离视网膜神经节细胞胞体,它已成为黄金标准的视网膜神经节细胞的存活和再生的实验计数视网膜神经节细胞。许多研究在哺乳动物进行了视神经损伤后视网膜神经节细胞研究生存。然而,视网膜神经节细胞在成年斑马鱼的逆行标记尚未报道,尽管一些替代的方法可以在视网膜神经节细胞层(RGCL)计数细胞数。考虑到成年斑马鱼头骨的小尺寸和死亡的钻探头骨后,高风险,我们打开头骨与酸蚀刻的帮助和密封孔与光固化债券,这可能会显著提高患者的生存率。吸收染料5天之后,几乎所有的视网膜神经节细胞被标记。由于这种方法不需要横切视神经,它是不可替代的视网膜神经节细胞存活的研究在成年斑马鱼视神经损伤后。在这里,我们介绍一步该方法步骤,并提供有代表性的成果。

Introduction

由于成年斑马鱼有很强的能力视神经损伤1后再生轴突,一个适当的方法来计算整个视网膜神经节细胞是必不可少的,以评估视网膜神经节细胞的存活和再生2。基于逆行标记视网膜神经节细胞在哺乳动物和金鱼3的方法– 5,我们构建了从成年斑马鱼的顶盖标记视网膜神经节细胞的方法。对于成年斑马鱼,两个关键技术问题应该注意:成年斑马鱼的头骨是非常小的6;他们生活在一个水环境。在这里,我们把头骨与腐蚀剂,最大限度地减少与钻5相关的危险。然后,我们封孔与光固化粘结手术后从而提高动物的生存。

此前,其他一些技术被采用来计算间接的方式视网膜神经节细胞数量。 HE染色的视网膜切片标签的所有类型的细胞中的RGCL 7。在整个Ř抗体标记etina,如胰岛-1,也可以标记无长突细胞8。虽然从视神经残端逆行标记可以标记在视网膜上所有的RGC,它不能被采用在挤压模型,因为它会造成额外损伤视神经。以逆行标签的优势从顶盖,我们已经研究视网膜神经节细胞的存活和再生的视神经损伤。结果表明,几乎所有的视网膜神经节细胞存活和视网膜神经节细胞的90%以上再生的顶盖在第一周的美眉模型9。

为了成功地标记所有视网膜神经节细胞,DiI荧光贴与其他几个商业染料10比较后选择。首先,它是专为在体内组织标记而设计的。其次,它是亲脂性染料,它不能扩散在水中。此外,这种荧光可以持续很长的时间,这使得它非常适合进行视网膜神经节细胞存活的研究。

Protocol

1,构建外科器械注:为了确保鱼的过程中和运行后,滴麻醉液乙基3 – 氨基苯甲酸酯(MS-222,或三卡因)在半浓度(0.015%)与1滴/秒的过鱼的嘴的速度仍然活着使用图1中所示的自制滴灌系统。 使一个框, 如图1A(长度为28厘米,宽为10厘米,高度为5厘米),把一个海绵(长度为6厘米,宽度为9厘米,高度为4厘米)的中间,并打开一个差距就?…

Representative Results

如图4B-D显示,DiI荧光阳性细胞的数目是三分之二DAPI +细胞RGCL的。在正常视网膜中,整个视网膜( 图4E)的一个蒙太奇图像显示的DiI +视网膜神经节细胞分布在整个视网膜上,但在再生的视网膜( 图4F),如在中心区域的RGC没有再生到其目标在第一个星期,他们不能被标记。 <img alt="图1…

Discussion

视网膜神经节细胞逆行标记是重要的研究视网膜神经节细胞存活的哺乳动物,但它并没有在斑马鱼中使用。替代的方法,HE染色7和抗体染色8,是不是金标准,用于计数视网膜神经节细胞数,和转基因品系与标记的RGC的所有还没有被构造12,13。在这段视频中,我们介绍一种方法逆行标记视网膜神经节细胞在成年斑马鱼视网膜。虽然大约1%的轴突投射到嗅球或其它区域14?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This is supported by 973 MOST grant (Grant No. 2011CB504402, 2012CB947602), National Natural Science Foundation of China (Grant No. 91132724, U1332136) and the ‘Hundred Talents Project’ of Chinese Academy of Science. The protocol was approved by the Committee on the Ethics of Animal Experiments of the USTC (Permit Number: USTCACUC1103013).

Materials

MS222 Sigma Aldrich E10521 USA
DiI Invitrogen N22880 USA
lightcuring bond Heraeus Kulzer  Durafill bond Germany
Gluma Etch Heraeus Kulzer  Gluma Etch 35 Gel Germany
Blue LED Shenruo Medical Equipment Co. Power Blue Light Curing Unit China

References

  1. Wyatt, C., et al. Analysis of the astray/robo2 zebrafish mutant reveals that degenerating tracts do not provide strong guidance cues for regenerating optic axons. J Neurosci. 30, 13838-13849 (2010).
  2. Grieshaber, P., Lagreze, W. A., Noack, C., Boehringer, D., Biermann, J. Staining of fluorogold-prelabeled retinal ganglion cells with calcein-AM: A new method for assessing cell vitality. J Neurosci Methods. 192, 233-239 (2010).
  3. Schwalb, J. M., et al. Two factors secreted by the goldfish optic nerve induce retinal ganglion cells to regenerate axons in culture. J Neurosci. 15, 5514-5525 (1995).
  4. Watanabe, M., Inukai, N., Fukuda, Y. Survival of retinal ganglion cells after transection of the optic nerve in adult cats: a quantitative study within two weeks. Vis Neurosci. 18, 137-145 (2001).
  5. Chiu, K., Lau, W. M., Yeung, S. C., Chang, R. C., So, K. F. Retrograde labeling of retinal ganglion cells by application of fluoro-gold on the surface of superior colliculus. J Vis Exp. , (2008).
  6. Bakken, T. E., Stevens, C. F. Visual system scaling in teleost fish. J Comp Neurol. 520, 142-153 (2012).
  7. Zhou, L. X., Wang, Z. R. Changes in number and distribution of retinal ganglion cells after optic nerve crush in zebrafish. Shi Yan Sheng Wu Xue Bao. 35, 159-162 (2002).
  8. Sherpa, T., et al. Ganglion cell regeneration following whole-retina destruction in zebrafish. Dev Neurobiol. 68, 166-181 (2008).
  9. Zou, S., Tian, C., Ge, S., Hu, B. Neurogenesis of retinal ganglion cells is not essential to visual functional recovery after optic nerve injury in adult zebrafish. PLoS One. 8, (2013).
  10. Choi, D., Li, D., Raisman, G. Fluorescent retrograde neuronal tracers that label the rat facial nucleus: a comparison of Fast Blue, Fluoro-ruby, Fluoro-emerald, Fluoro-Gold and DiI. J Neurosci Methods. 117, 167-172 (2002).
  11. Zou, S. Q., et al. Using the optokinetic response to study visual function of zebrafish. J Vis Exp. , (2010).
  12. Tokuoka, H., Yoshida, T., Matsuda, N., Mishina, M. Regulation by glycogen synthase kinase-3beta of the arborization field and maturation of retinotectal projection in zebrafish. J Neurosci. 22, 10324-10332 (2002).
  13. Xiao, T., Roeser, T., Staub, W., Baier, H. A GFP-based genetic screen reveals mutations that disrupt the architecture of the zebrafish retinotectal projection. Development. 132, 2955-2967 (2005).
  14. Li, L., Dowling, J. E. Disruption of the olfactoretinal centrifugal pathway may relate to the visual system defect in night blindness b mutant zebrafish. Journal of Neuroscience. 20, 1883-1892 (2000).
  15. Kassing, V., Engelmann, J., Kurtz, R. Monitoring of Single-Cell Responses in the Optic Tectum of Adult Zebrafish with Dextran-Coupled Calcium Dyes Delivered via Local Electroporation. PLoS One. 8, (2013).
check_url/fr/50987?article_type=t

Play Video

Citer Cet Article
Zou, S., Tian, C., Du, S., Hu, B. Retrograde Labeling of Retinal Ganglion Cells in Adult Zebrafish with Fluorescent Dyes. J. Vis. Exp. (87), e50987, doi:10.3791/50987 (2014).

View Video