Summary

皮层小胶质细胞的分离与保存免疫表型和功能从新生儿鼠

Published: January 30, 2014
doi:

Summary

一键小胶质细胞生物学的研究成功是小胶质细胞免疫功能的体外从中枢神经系统组织分离过程中的保存。通过旋转振动造成的高纯度和immunofunctional细胞培养物中分离的小胶质细胞所评估的荧光成像,免疫细胞化学,ELISA和以下的小胶质细胞活化的促炎性刺激脂多糖(LPS)和Pam 3 CSK 4(PAM)。

Abstract

从中枢神经系统组织的小胶质细胞的隔离是用于研究小胶质细胞生物学体外强大的调查工具。本发明方法详述的程序用于通过机械搅拌,用旋转摇动器隔离的小胶质细胞的新生鼠皮层。这个小胶质细胞的分离方法产率,表现出在体内正常的,非病理性状况指示静态小胶质细胞的形态和功能特征的高纯度皮质小神经胶质细胞。此过程还保留了小胶质细胞的免疫表型和生化功能就证明了形态变化,NF-κB(p65蛋白)的P65亚基的核转运,和标志促炎性细胞因子的分泌,肿瘤坏死因子-α(TNF-α的诱导),经脂多糖(LPS)和Pam 3 CSK 4(PAM)的挑战。因此,本分离方法保留了两个静态和激活的免疫vated小胶质细胞,提供调查在体外条件下小胶质细胞生物学的实验方法

Introduction

小胶质细胞,CNS实质的监视巨噬细胞,包括成年哺乳动物大脑的总细胞群的约12%。小胶质细胞来源于卵黄囊骨髓前体细胞,改变细胞密度和形态在不同的细胞结构区域的成人中枢神经系统1-5范围内。在一个健康的成年人的大脑,小胶质细胞小,分枝或极性细胞,精,动态过程。相较于周边的巨噬细胞的形态,小胶质展示,可能会出现蜂窝闲置健康的大脑静止,低调的表型,但在体内成像研究表明,小胶质细胞的过程中动态地伸出和缩回,以监测他们的微环境的方式让人想起“采样和测量“6,7。

小胶质细胞是高度和差分响应于环境和病理生理改变在大脑中,切换从监视者与效应国家通常被视为他们的休息和激活状态,分别为。这在激活开关可以通过膜结合的模式识别受体(的PRRs),如Toll-样受体(TLRs),其中病原体相关分子模式响应(的PAMP),包括细菌和病毒衍生的脂蛋白的啮合来介导,核酸,碳水化合物和8-11。除的PAMP,模式识别受体也已显示出诱导小胶质细胞活化对被称为危险/损伤相关分子模式(D-AMPS),无菌的,非致病性的分子,其代表在中枢神经系统内环境稳定的扰动,如细 ​​胞损伤12-16。一旦接合,模式识别受体引发的细胞内信号级联放大,结果在变化中的小胶质细胞形态和基因表达,具体而言,活化的小胶质细胞适应的变形虫状的表型,转运的p65的NF-κB亚基(p65蛋白)的细胞的细胞核,并且上调了机生产线CTION和促炎细胞因子,如肿瘤坏死因子-α(TNF-α),白介素-1β(IL-1β),随着活性氧(ROS)的16-24的分泌。虽然积分在CNS中的先天免疫应答,这些分泌的分子也已发现增加神经细胞的氧化应激,从而诱发并加重神经变性疾病状态,如帕金森氏症和阿尔茨海默氏病25-29。

然而,在病理状态的小胶质细胞活化的机制尚未完全了解。因此,小胶质细胞的分离是一个强大的调查工具为这些生物过程,因为许多小胶质细胞激活体内功能可以在培养中概括。有几种方法可用于通过Percoll梯度以下CNS组织30,31的酶消化分离的小胶质细胞,包括隔离。然而,酶消化可以改变细胞通过减少细胞表面抗原的表达32,结果在每个动物的低细胞产量比本文所描述的方法中的免疫表型。具体来说,我们报告每小狗皮质的平均收益率小胶质细胞7.5×10 5细胞,而以前报道的整个中枢神经系统隔离的方法通过Percoll梯度产量3-5×10 5细胞30,33,34。本程序规避通过隔离基于其低粘附性小胶质细胞,从而保留了小胶质细胞免疫表型和功能的使用消化酶。

在本研究中,我们描述了从新生儿杂CX3CR1-GFP(CX3CR1-GFP + / – )衍生的混合胶质细胞培养的小胶质细胞的分离通过在旋转摇床上,先前的延长机械搅拌和C57BL / 6小鼠皮层出版法24,35。我们利用前小鼠品系的小胶质细胞易于可视化,这些小鼠表达内源性CX3CR1轨迹的控制下的GFP -单核细胞特异性启动子36-38。这种方法可以产生高纯度的小胶质细胞培养物具有保藏免疫体外 ,当与细菌脂多糖(LPS)或帕姆3 CSK 4挑战就证明了形态变化,p65蛋白的核转位,和TNF-α的分泌,TLR4和TLR1 / 2激动剂元。

Protocol

再开始此协议,在出生后几天收集新生小鼠1-3(P1-3)在无菌容器中嵌套原笼床上用品的保护和温暖。它可以快速,高效地工作,通过该协议来优化小胶质收益率是很重要的。请参阅表1为完整的试剂列表。 1。仪器仪表,文化传媒,以及菜肴的制备制备出10毫升/小狗小胶质细胞完全培养基(MCM,1个最低必需培养基Earle的[存储]补充有:1 2mM L-谷氨酰胺,1mM丙…

Representative Results

保留了小胶质细胞的体外分离过程中的免疫表型和功能是至关重要的,以便能够利用这些细胞作为调查模型胶质生物学。为了说明小胶质immunofunctionality的使用本发明方法的成功保存,我们分离皮质小神经胶质细胞从新生儿P3(CX3CR1-GFP + / -小鼠和C57BL / 6)和处理的培养物与任何LPS或帕姆。 如图1A所示 ,通过搅动小胶质细胞的分离通过旋转振动保留?…

Discussion

本程序提供了一种有效的方法皮层小胶质细胞从新生小鼠的隔离。这个过程有:1)保持小胶质细胞免疫表型和功能性两方面的益处,如通过荧光成像,免疫细胞化学和ELISA测定,以及,2)使小胶质细胞在其他神经胶质细胞(星形胶质细胞和oligodentrocytes)的存在之前,成熟隔离,这可能会在培养的神经胶质成熟期间促进重要细胞 – 细胞相互作用。重要的是,分离的细胞具有较高的生存能力和均匀?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

这项工作是由NIEHS的R01ES014470(KMZ)的支持。

Materials

Glucose Sigma G8270 Make 20% Stock Solution with MilliQ water; filter sterilize; store at 4 °C; shelf life: 3-6 months. Used to make MCM and MGM.
Sodium pyruvate 100 mM (100x) Hyclone SH30239.01 Store at 4 °C. Used to make MCM and MGM.
Penicillin/Streptomycin 10,000 units/ml (100x) Gibco 15140-122 Store at -20 °C. Used to make MCM, MGM, MM, and DM.
L-glutamine 200 mM (100x) Gibco 25030-081 Store at -20 °C. Used to make MCM and MGM.
Fetal Bovine Serum (Defined) Hyclone SH30070.03 Filter sterilize; store at -20 °C. Used to make MCM and MGM.
Minimum Essential Medium Earle's (MEM) Cellgro 15-010-CV Without L-glutamine. Contains Earle's salts. Used to make MCM, MGM, and DM.
Horse Serum Gibco 16050 Filter sterilize; store at -20 °C. Used to make MCM and MGM.
Hanks' Balanced Salt Solution (HBSS) Cellgro 21-021-CV Without calcium and magnesium. Store at 4 °C. Used to make MM.
HEPES 1 M Gibco 15630-031 Store at 4 °C. Used to make MM.
T-75 Flask Corning 430641
4',6-Diamidino-2-Phenylindole, dilactate (DAPI) Invitrogen D3571 Used to stain cell nucleus.
Rabbit anti-Iba1 Wako 019-19741 Used at 1/750 dilution for ICC staining of Iba1. 
Rabbit anti-NFκB (p65) Abcam 7970 Used at 1/1250 dilution for ICC staining for p65.
Alexafluor 594 Goat anti-Rabbit IgG (H+L) Invitrogen A11012 Used at 1/1000 dilution for visualization of antigen:antibody complex in ICC.
10 ml Disposable Serological Pipet Fisher Scientific 13-678-11E
50 ml Disposable Centrifuge Tube Fisher Scientific 05-539-8
15 ml Disposible Centrifuge Tube Fisher Scientific 05-539-12
Sterile Polystyrene Petri Dish Fisher Scientific 875713 100 mm x 15 mm
Scissor: Straight Metzembaum (scissor #1) Roboz Surgical RS-6010 1; 5 inch; used for removing head
Scissor: Vannas
(scissor #2)
Fine Science Tools 15000-08 1; non-angled; 2.5mm cutting edge; used to open scalp
Scissor: Student Vannas (scissor #3) Fine Science Tools 91501-09 1; curved; used to mince brain tissue
Forcep: Dumont #7
(forcep #1)
Fine Science Tools 91197-00 2; used to secure nose and remove cortices 
Forcep: Dumont #2
(forcep #2)
Fine Science Tools 11223-20 1; used to remove scalp
Forcep: Dumont #3
(forcep #3)
Fine Science Tools 11231-30 1; used to remove skull
Forcep: Dumont #5a
(forcep #4)
Fine Science Tools 11253-21 1; used to remove meninges
Table of specific equipment
Name of Equipment Name of Company Catalogue Number Comments
Zoom Stereo Dissection Microscope  Olympus SZ4060 Microscope is placed inside Laminar-Horizontal Flow Cabinet
Laminar-Horizontal Flow Cabinet Nuaire NU-201-330
Biological Safety Cabinet Labconco 3440001 Class II
Water-Jacketed CO2 Incubator VWR 97025-836 Set to 37 °C, 5% CO2
Swing-out buckets Fisher Scientific 75006441 To be used with Swing-out rotor
Swing-out Rotor Fisher Scientific 75006445 Max Radius: 19.2 (cm)
Sorvall Legend RT+ Centrifuge
(clinical centrifuge)
Fisher Scientific 75-004-377 With swing-out rotor
AccuSpin Micro 17 microcentrifuge
(tabletop microcentrifuge)
Fisher Scientific S98645 With microliter rotor (24 x 1.5/2.0 ml;
Cat #: 75003524)  

References

  1. Ranshoff, R. M. P. V. H. Microglia Physiology: Unique Stimuli, Specialized Responses. Annu. Rev. Immunol. 27, 119-145 (2009).
  2. Lawson, L. J., Perry, V. H., Dri, P., Gordon, S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neurosciences. 39, 151-170 (1990).
  3. Gomez Perdiguero, E., Schulz, C., Geissmann, F. Development and homeostasis of "resident" myeloid cells: The case of the microglia. Glia. 61, 112-120 (2013).
  4. Kierdorf, K., et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 16, 273-280 (2013).
  5. Saijo, K., Glass, C. K. Microglial cell origin and phenotypes in health and disease. Nature reviews. Immunology. , 11-775 (2011).
  6. Davalos, D., et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752-758 (2005).
  7. Nimmerjahn, A., Kirchhoff, F., Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 308, 1314-1318 (2005).
  8. Hu, S., et al. Cytokine and free radical production by porcine microglia. Clin. Immunol. Immunopathol. 78, 93-96 (1996).
  9. Muzio, M., Polentarutti, N., Bosisio, D., Prahladan, M. K., Mantovani, A. Toll-like receptors: a growing family of immune receptors that are differentially expressed and regulated by different leukocytes. J. Leukocyte Biol. 67, 450-456 (2000).
  10. Lee, S. J., Lee, S. Toll-like receptors and inflammation in the CNS. Curr. Drug Targets. Inflamm. Allergy. 1, 181-191 (2002).
  11. Block, M. L., Zecca, L., Hong, J. S. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 8, 57-69 (2007).
  12. Halle, A., et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol. 9, 857-865 (2008).
  13. Chen, G. Y., Nunez, G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10, 826-837 (2010).
  14. Duewell, P., et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 464, 1357-1361 (2010).
  15. Stewart, C. R., et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4. 11, 155-161 (2010).
  16. Beraud, D., et al. alpha-Synuclein Alters Toll-Like Receptor Expression. Front. Neurosci. 5, 80 (2011).
  17. Banati, R. B., Gehrmann, J., Schubert, P., Kreutzberg, G. W. Cytotoxicity of microglia.. Glia. 7, 111-118 (1993).
  18. Combs, C. K., Karlo, J. C., Kao, S. C., Landreth, G. E. beta-Amyloid stimulation of microglia and monocytes results in TNF alpha-dependent expression of induciblenitric oxide synthase and neuronal apoptosis. J. Neurosci. 21, 1179-1188 (2001).
  19. Kim, Y. S., Joh, T. H. Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson’s disease. Exp. Mol. Med. 38, 333-347 (2006).
  20. Colton, C., Wilcock, D. M. Assessing activation states in microglia. CNS Neurol. Disord. Drug Targets. 9, 174-191 (2010).
  21. Nakajima, K., Tohyama, Y., Kohsaka, S., Kurihara, T. Ceramide activates microglia to enhance the production/secretion of brain-derived neurotrophic factor (BDNF) without induction of deleterious factors in vitro. J. Neurochem. 80, 697-705 (2002).
  22. Uesugi, M., Nakajima, K., Tohyama, Y., Kohsaka, S., Kurihara, T. Nonparticipation of nuclear factor kappa B (NFkappaB) in the signaling cascade of c-JunN-terminal kinase (JNK)- and p38 mitogen-activated protein kinase (p38MAPK)-dependent tumor necrosis factor alpha (TNFalpha) induction in lipopolysaccharide (LPS)-stimulated microglia. Brain Res. , 1073-1074 (2006).
  23. Beraud, D., et al. Microglial Activation and Antioxidant Responses Induced by the Parkinson’s Disease Protein alpha-Synuclein. J. Neuroimmun. Pharmacol. 8, 94-117 (2013).
  24. Su, X., et al. Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol. Aging. 29, 1690-1701 (2008).
  25. Minghetti, L., Levi, G. Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog. Neurobiol. 54, 99-125 (1998).
  26. Hirsch, E. C. Glial cells and Parkinson’s disease. J. Neurol.. 247 (2), 58-62 (2000).
  27. Liu, B., et al. Role of nitric oxide in inflammation-mediated neurodegeneration. Ann. NY Acad. Sci. 962, 318-331 (2002).
  28. Shie, F. S., Nivison, M., Hsu, P. C., Montine, T. J. Modulation of microglialinnate immunity in Alzheimer’s disease by activation of peroxisome proliferator-activated receptor gamma. Curr. Med. Chem. 16, 643-651 (2009).
  29. Rogers, J., Mastroeni, D., Leonard, B., Joyce, J., Grover, A. Neuroinflammation in Alzheimer’s disease and Parkinson’s disease: are microglia pathogenic in either disorder. Int. Rev. Neurobiol. 82, 235-246 (2007).
  30. Cardona, A. E., Huang, D., Sasse, M. E., Ransohoff, R. M. Isolation of murinemicroglial cells for RNA analysis or flow cytometry. Nat. Protoc. 1, 1947-1951 (2006).
  31. Ford, A. L., Goodsall, A. L., Hickey, W. F., Sedgwick, J. D. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigenpresentation to myelin basic protein-reactive CD4+ T cells compared. J. Immunol. 154, 4309-4321 (1995).
  32. Ford, A. L., Foulcher, E., Goodsall, A. L., Sedgwick, J. D. Tissue digestion with dispase substantially reduces lymphocyte and macrophage cell-surface antigen expression. J. Immunol. Methods. 194, 71-75 (1996).
  33. Pino, P. A., Cardona, A. E. Isolation of brain and spinal cord mononuclear cells using percoll gradients. J. Vis. Exp. , (2011).
  34. Veremeyko, T., Starossom, S. C., Weiner, H. L., Ponomarev, E. D. Detection of microRNAs in microglia by real-time PCR in normal CNS and during neuroinflammation. J. Vis. Exp. , (2012).
  35. Su, X., Federoff, H. J., Maguire-Zeiss, K. A. Mutant alpha-synuclein overexpression mediates early proinflammatory activity. Neurotox. Res. 16, 238-254 (2009).
  36. Jung, S., et al. Analysis of fractalkine receptorCX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell. Biol. 20, 4106-4114 (2000).
  37. Imai, T., et al. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell. 91, 521-530 (1997).
  38. Cardona, A. E., et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat. Neurosci. 9, 917-924 (2006).
  39. Streit, W. J., Walter, S. A., Pennell, N. A. Reactive microgliosis. Prog. Neurobiol. 57, 563-581 (1999).
  40. Frank, M. G., Wieseler-Frank, J. L., Watkins, L. R., Maier, S. F. Rapid isolation of highly enriched and quiescent microglia from adult rat hippocampus:immunophenotypic and functional characteristics. J. Neurosci. Methods. 151, 121-130 (2006).
check_url/fr/51005?article_type=t

Play Video

Citer Cet Article
Daniele, S. G., Edwards, A. A., Maguire-Zeiss, K. A. Isolation of Cortical Microglia with Preserved Immunophenotype and Functionality From Murine Neonates. J. Vis. Exp. (83), e51005, doi:10.3791/51005 (2014).

View Video