Summary

ड्रोसोफिला में तापमान वरीयता व्यवहार और इसकी सर्कैडियन ताल का डिजाइन और विश्लेषण

Published: January 13, 2014
doi:

Summary

हमने हाल ही में एक उपन्यास ड्रोसोफिला सर्कैडियन आउटपुट, तापमान वरीयता लय (टीपीआर) की पहचान की, जिसमें मक्खियों में पसंदीदा तापमान दिन के दौरान उगता है और रात के दौरान गिरता है। टीपीआर को एक अन्य सर्कैडियन आउटपुट, लोकोमोटर गतिविधि से स्वतंत्र रूप से विनियमित किया जाता है। यहां हम ड्रोसोफिलामें टीपीआर के डिजाइन और विश्लेषण का वर्णन करते हैं।

Abstract

सर्कैडियन घड़ी जीवन के कई पहलुओं को नियंत्रित करती है, जिसमें नींद, लोकोमोटर गतिविधि और शरीर का तापमान (बीटीआर) लय1,2शामिल हैं। हमने हाल ही में एक उपन्यास ड्रोसोफिला सर्कैडियन आउटपुट की पहचान की, जिसे तापमान वरीयता लय (टीपीआर) कहा जाता है, जिसमें मक्खियों में पसंदीदा तापमान दिन के दौरान बढ़ता है और रात 3 के दौरान गिरताहै। हैरानी की बात है कि टीपीआर और लोकोमोटर गतिविधि को अलग सर्कैडियन न्यूरॉन्स 3 के माध्यम से नियंत्रित कियाजाताहै। ड्रोसोफिला लोकोमोटर गतिविधि एक प्रसिद्ध सर्कैडियन व्यवहार उत्पादन है और इसने कई संरक्षित स्तनधारी सर्कैडियन घड़ी जीन और तंत्र4की खोज में मजबूत योगदान प्रदान किया है। इसलिए, टीपीआर को समझने से अब तक अज्ञात आणविक और सेलुलर सर्कैडियन तंत्र की पहचान होगी। यहां, हम टीपीआर परख का प्रदर्शन और विश्लेषण करने का तरीका बताते हैं। यह तकनीक न केवल टीपीआर के आणविक और तंत्रिका तंत्र को विच्छेदन करने की अनुमति देती है, बल्कि मस्तिष्क कार्यों के मौलिक तंत्रों में नई अंतर्दृष्टि भी प्रदान करती है जो विभिन्न पर्यावरणीय संकेतों को एकीकृत करती हैं और पशु व्यवहार को विनियमित करती हैं। इसके अलावा, हमारे हाल ही में प्रकाशित डेटा से पता चलता है कि फ्लाई टीपीआर स्तनधारी बीटीआर3के साथ सुविधाओं को साझा करता है। ड्रोसोफिला ectotherms हैं, जिसमें शरीर के तापमान आम तौर पर व्यवहार रूप से विनियमित है। इसलिए, टीपीआर एक रणनीति है जो इन मक्खियों में5-8मक्खियों में एक लयबद्ध शरीर का तापमान उत्पन्न करने के लिए उपयोग की जाती है। हमारा मानना है कि ड्रोसोफिला टीपीआर की आगे की खोज से जानवरों में शरीर के तापमान नियंत्रण में अंतर्निहित तंत्र के लक्षण वर्णन को सुविधाजनक बनाया जा सकेगा ।

Introduction

तापमान एक सर्वव्यापी पर्यावरण क्यू है । हानिकारक तापमान से बचने और आरामदायक लोगों की तलाश करने के लिए जानवर विभिन्न प्रकार के व्यवहार प्रदर्शित करते हैं। ड्रोसोफिला एक मजबूत तापमान वरीयता व्यवहार6,7प्रदर्शन करते हैं। जब मक्खियों को 18-32 डिग्री सेल्सियस से तापमान ढाल में छोड़ा जाता है, तो मक्खियां गर्म और ठंडे तापमान दोनों से बचती हैं और अंत में सुबह3में 25 डिग्री सेल्सियस का पसंदीदा तापमान चुनती हैं। गर्म तापमान सेंसर थर्मोसेंसरी न्यूरॉन्स, एसी न्यूरॉन्स का एक सेट है, जो ड्रोसोफिला क्षणिक रिसेप्टर क्षमता (टीपीआर) चैनल, TRPA16,9व्यक्त करते हैं। ठंडे तापमान सेंसर तीसरे एंटीनाल खंडों में स्थित हैं, क्योंकि तीसरे एंटीना सेगमेंट को अलग करने से ठंडे तापमान परिहार की कमी होती है6। हाल ही में, टीआरपीपी प्रोटीन ब्रिविडो (बीआरवी) की पहचान10थी। चूंकि बीआरवी तीसरे एंटीना सेगमेंट में व्यक्त किया जाता है और ठंड का पता लगाने में मध्यस्थता करता है, बीआरवी एक संभावित कोल्ड सेंसिंग अणु है, जो तापमान वरीयता व्यवहार के लिए महत्वपूर्ण है। संक्षेप में, मक्खियों गर्म और ठंडे तापमान से बचने और एक पसंदीदा तापमान खोजने के लिए इन दो तापमान सेंसरों का उपयोग करते हैं।

जबकि स्तनधारी अपने शरीर के तापमान को विनियमित करने के लिए गर्मी उत्पन्न करते हैं, ectotherms आम तौर पर परिवेश के तापमान11के लिए अपने शरीर के तापमान को अनुकूलित । कुछ ectotherms एक दैनिक टीपीआर व्यवहार है जो ectotherms के लिए एक रणनीति के लिए अपने BTR12को विनियमित करने के लिए माना जाता है प्रदर्शन करने के लिए जाना जाता है । यह निर्धारित करने के लिए कि मक्खियों ने टीपीआर का प्रदर्शन किया है या नहीं, हमने 24 घंटे की अवधि के दौरान विभिन्न बिंदुओं पर तापमान वरीयता व्यवहार विश्लेषण दोहराया। हमने पाया कि ड्रोसोफिला एक दैनिक टीपीआर का प्रदर्शन करता है, जो सुबह में कम और शाम को उच्च होता है और मनुष्यों में बीटीआर के समान पैटर्न का पालन करता है13।

ड्रोसोफिलामें, मस्तिष्क में ~ 150 घड़ी न्यूरॉन्स हैं। लोकोमोटर गतिविधि को विनियमित करने वाले घड़ी न्यूरॉन्स को एम और ई ऑसिलेटर कहा जाता है। हालांकि, दिलचस्प बात यह है कि एम और ई ऑसिलेटर टीपीआर को विनियमित नहीं करते हैं, इसके बजाय, हमने दिखाया कि मस्तिष्क में DN2 घड़ी न्यूरॉन्स टीपीआर को विनियमित करते हैं लेकिन लोकोमोटर गतिविधि नहीं। इन आंकड़ों से पता चलता है कि टीपीआर को लोकोमोटर गतिविधि से स्वतंत्र रूप से विनियमित किया जाता है। विशेष रूप से, स्तनधारी बीटीआर को लोकोमोटर गतिविधि से स्वतंत्र रूप से विनियमित भी किया जाता है। चूहों में एब्लेशन अध्ययन ों से पता चलता है कि बीटीआर को विशिष्ट एससीएन न्यूरॉन्स के माध्यम से नियंत्रित किया जाता है जो लोकोमोटर गतिविधिको नियंत्रितकरने वाले लोगों की तुलना में सबपरावेंट्रिकुलर जोन न्यूरॉन्स के एक अलग सबसेट को लक्षित करते हैं। इसलिए, हमारे डेटा संभावना है कि स्तनधारी बीटीआर और फ्लाई टीपीआर विकासात्मक रूप सेसंरक्षित 3हैं, क्योंकि फ्लाई टीपीआर और स्तनधारी बीटीआर दोनों सर्कैडियन घड़ी-निर्भर तापमान लय प्रदर्शित करते हैं, जो स्वतंत्र रूप से लोकोमोटर गतिविधि से विनियमित होते हैं।

यहां, हम ड्रोसोफिलामें टीपीआर व्यवहार परख का विश्लेषण करने के तरीके के विवरण का वर्णन करते हैं। यह विधि न केवल टीपीआर के आणविक तंत्र और तंत्रिका सर्किट की जांच के लिए अनुमति देती है, बल्कि यह भी कि मस्तिष्क विभिन्न पर्यावरणीय संकेतों और आंतरिक जैविक घड़ियों को कैसे एकीकृत करता है।

Protocol

1. मक्खियों की तैयारी लाइट डार्क (एलडी) प्रयोग प्रकाश 12 घंटे/डार्क 12 घंटा (एलडी) चक्र के तहत इनक्यूबेटर (25 डिग्री सेल्सियस/40-60% सापेक्ष आर्द्रता (आरएच)) में मक्खियों को बढ़ाएं । इनक्यूबेटर की हल?…

Representative Results

तापमान वरीयता लय का एक उदाहरण चित्र 5में दिखाया गया है । यदि व्यवहार प्रक्रिया सफलतापूर्वक की जाती है, तो मक्खियों को टीपीआर प्रदर्शित करना चाहिए जिसमें वे सुबह कम तापमान और शाम को उच्च तापमान पस…

Discussion

यहां, हम तापमान वरीयता व्यवहार तंत्र और टीपीआर व्यवहार के विश्लेषण के विवरण को दर्शाते हैं। ड्रोसोफिला घड़ी नियंत्रित टीपीआर की मुख्य, मजबूत और प्रजनन योग्य विशेषताओं को प्रदर्शित करता है। हालां?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

हम डीआरएस के आभारी हैं । अरविंथन सैमुअल और मार्क गेर्शो जिन्होंने व्यवहार तंत्र और मैथ्यू बाटी के प्रारंभिक संस्करण को विकसित करने में मदद की जिन्होंने व्यवहार तंत्र को संशोधित किया । इस शोध को सिनसिनाटी चिल्ड्रन हॉस्पिटल, जेएसटी/प्रेस्टो, मार्च ऑफ डिम्स और एनआईएच R01 GM107582 से एफएनएच को ट्रस्टी ग्रांट ने समर्थन दिया ।

Materials

Bright Lab Jr. Safelight Amazon #B00013J8UY Red light for dark rooms
Rain X SOPUS products Water repellent: Apply the plexiglass cover
C-Clamp Home Depot
Temperature/hygrometer Fisher 15-077-963
Peltier devices TE Technology, Inc. HP-127-1.4-1.15-71P
Thermometer Fluke Fluke 52II
Bench top controller Oven Industries 5R6-570-15R and 5R6-570-24R
Temperature sensor probe Oven Industries TR67-32
Generic 480 Watt ATX power supply computer cooling system
MCR220-QP-RES Dual 120 mm Radiator with reservoir  Swiftech computer cooling system
MCP350 In-Line 12V DC pump Swiftech computer cooling system
MCW50 graphics Card liquid cooler Swiftech computer cooling system
Scythe Kaze-Jyuni SY1225SL12SH fan Crazy PC computer cooling system

References

  1. Krauchi, K. The thermophysiological cascade leading to sleep initiation in relation to phase of entrainment. Sleep Med. Rev. 11, 439-451 (2007).
  2. Krauchi, K. The human sleep-wake cycle reconsidered from a thermoregulatory point of view. Physiol. Behav. 90, 236-245 (2007).
  3. Kaneko, H., et al. Circadian Rhythm of Temperature Preference and Its Neural Control in Drosophila. Curr. Biol. 22, 1851-1857 (2012).
  4. Allada, R., Chung, B. Y. Circadian organization of behavior and physiology in Drosophila. Annu. Rev. Physiol. 72, 605-624 (2010).
  5. Garrity, P. A., Goodman, M. B., Samuel, A. D., Sengupta, P. Running hot and cold: behavioral strategies, neural circuits, and the molecular machinery for thermotaxis in C. elegans and Drosophila.. Genes Dev. 24, 2365-2382 (2010).
  6. Hamada, F. N., et al. An internal thermal sensor controlling temperature preference in Drosophila. Nature. 454, 217-220 (2008).
  7. Hong, S. T., et al. cAMP signalling in mushroom bodies modulates temperature preference behaviour in Drosophila. Nature. 454, 771-775 (2008).
  8. Dillon, M. E., Wang, G., Garrity, P. A., Huey, R. B. Review: Thermal preference in Drosophila. J. Therm. Biol. 34, 109-119 (2009).
  9. Viswanath, V., et al. Opposite thermosensor in fruitfly and. Nature. 423, 822-823 (2003).
  10. Gallio, M., Ofstad, T. A., Macpherson, L. J., Wang, J. W., Zuker, C. S. The coding of temperature in the Drosophila brain. Cell. 144, 614-624 (2011).
  11. Stevenson, R. D. The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms. Am. Nat. 126 (3), (1985).
  12. Refinetti, R., Menaker, M. The circadian rhythm of body temperature. Physiol. Behav. 51, 613-637 (1992).
  13. Duffy, J. F., Dijk, D. J., Klerman, E. B., Czeisler, C. A. Later endogenous circadian temperature nadir relative to an earlier wake time in older people. Am. J. Physiol. 275, 1478-1487 (1998).
  14. Saper, C. B., Lu, J., Chou, T. C., Gooley, J. The hypothalamic integrator for circadian rhythms. Trends Neurosci. 28, 152-157 (2005).
  15. Konopka, R. J., Pittendrigh, C., Orr, D. Reciprocal behaviour associated with altered homeostasis and photosensitivity of Drosophila clock mutants. J. Neurogenet. 6, 1-10 (1989).
  16. Qiu, J., Hardin, P. E. per mRNA cycling is locked to lights-off under photoperiodic conditions that support circadian feedback loop function. Mol. Cell Biol. 16, 4182-4188 (1996).
  17. Crocker, A., Sehgal, A. Genetic analysis of sleep. Genes Dev. 24, 1220-1235 (1220).
  18. Hendricks, J. C., et al. Rest in Drosophila is a sleep-like state. Neuron. 25, 129-138 (2000).
  19. Shaw, P. J., Cirelli, C., Greenspan, R. J., Tononi, G. Correlates of sleep and waking in Drosophila melanogaster. Science. 287, 1834-1837 (2000).
  20. Parisky, K. M., et al. PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit. Neuron. 60, 672-682 (2008).
check_url/fr/51097?article_type=t

Play Video

Citer Cet Article
Goda, T., Leslie, J. R., Hamada, F. N. Design and Analysis of Temperature Preference Behavior and its Circadian Rhythm in Drosophila. J. Vis. Exp. (83), e51097, doi:10.3791/51097 (2014).

View Video