Summary

了解早期器官使用简体<em>原位</em>杂交协议<em>爪</em

Published: January 12, 2015
doi:

Summary

The Xenopus laevis embryo continues to be exceptionally useful in the study of early development due to its large size and ease of manipulation. A simplified protocol for whole mount in situ hybridization protocol is provided that can be used in the identification of specific organs in this model system.

Abstract

Organogenesis is the study of how organs are specified and then acquire their specific shape and functions during development. The Xenopuslaevis embryo is very useful for studying organogenesis because their large size makes them very suitable for identifying organs at the earliest steps in organogenesis. At this time, the primary method used for identifying a specific organ or primordium is whole mount in situ hybridization with labeled antisense RNA probes specific to a gene that is expressed in the organ of interest. In addition, it is relatively easy to manipulate genes or signaling pathways in Xenopus and in situ hybridization allows one to then assay for changes in the presence or morphology of a target organ. Whole mount in situ hybridization is a multi-day protocol with many steps involved. Here we provide a simplified protocol with reduced numbers of steps and reagents used that works well for routine assays. In situ hybridization robots have greatly facilitated the process and we detail how and when we utilize that technology in the process. Once an in situ hybridization is complete, capturing the best image of the result can be frustrating. We provide advice on how to optimize imaging of in situ hybridization results. Although the protocol describes assessing organogenesis in Xenopus laevis, the same basic protocol can almost certainly be adapted to Xenopus tropicalis and other model systems.

Introduction

The expression pattern of a specific gene is an important piece of information in determining the potential role for that gene in the development of a specific organ or cell type. Simply put, if it is not expressed at the right time and place it is unlikely to play a key role. In Xenopus, as in most early embryos, the most commonly used assay for detecting the expression of a gene is whole mount in situ hybridization using labeled antisense RNA probes. The use of antibody staining to assess expression of a gene in Xenopus is becoming more common as researchers discover antibodies, usually raised against mammalian proteins, that cross react to the Xenopus homologue or generate their own 1-3. However, the vast majority of studies on Xenopus organogenesis still utilize antisense RNA probes. When antibodies are used, each individual antibody often requires optimization for the primary antibody concentration or fixation protocols. In contrast, the protocol for in situ hybridizations is essentially invariant for different probes. The basic concept is relatively simple and an excellent standard protocol has been well established 4. Our protocol is a streamlined version of the original protocol 4 that still provides excellent detection of gene expression patterns in the early embryo. The embryos are fixed and then prepared for hybridization by changing solutions and temperatures such that it allows for high stringency binding of the labeled antisense RNA probe to its target mRNA. The unbound probe is washed away and the embryos are then prepared for binding of an antibody against the label on the RNA probes. Excess antibody is then washed away and an enzymatic color reaction is used to localize where the RNA probe is bound in the embryo. There are now a number of Xenopus transgenic lines that drive expression of fluorescent proteins in specific tissues and these are available at the Xenopus stock centers such as the National Xenopus Resource in Woods Hole. While very useful for many experiments that require examining organogenesis in living embryos, this option requires separate housing for the transgenic lines.

In situ hybridization can clearly delineate where specific organs or cell types will form in the early embryo (Figure 1). The technique is remarkably sensitive given that one can detect gene expression in a small number of cells in a single embryo 5. However, in situ hybridization using the intensity of colorimetric staining is not considered quantifiable because the color reaction is not a linear one. Despite difficulty in quantifying staining intensity, changes in expression are often quite noticeable; particularly when the in situ hybridization shows quantifiable increases or decreases in the size of expression domains 6,7.

The clear advantages of whole mount in situ hybridization make it a critical assay in the study of early development. However, it is a time consuming one that requires many steps over several days. This protocol is a simplified version of the standard protocol that eliminates several steps without reducing the quality of the in situ result. The simplification also eliminates sources of variability, making trouble shooting easier if an in situ hybridization is not optimal. Specifically, we have eliminated the use of proteinase K and RNAse treatments of the embryo, two steps that can depend on reagent quality and can also reduce signal intensity if overdone. The protocol also provides some degree of cost saving due to eliminating the use of several reagents. Finally, this protocol also provides some simple guidelines for improved capturing of images of in situ hybridization results. Although this protocol is optimized for work in Xenopus embryos, it is likely that at least some of the simplifications will be applicable to in situ hybridization work in other embryo systems.

Protocol

1.胚胎准备如果不是作为胚胎培养,脱果冻用2.5%半胱氨酸,pH 8.0中之前定影8胚胎的一部分经常做。虽然这不是绝对必要的,它然后手动使用细镊子固定之前​​除去受精信封是有用的。 使用玻璃巴斯德吸管转移的胚胎。移液器是不够宽传送胚胎所以使用金刚石笔来切割玻璃吸管在一个点宽到足以拿起一个胚胎。通过快速传递切断端通过本生灯的火焰来熔化尖锐边缘切割后…

Representative Results

利用组织特异性探针可以在关于开发特定器官的状态提供了优秀的信息。在下列实施例中,胚胎的阶段是基于新科普和费伯临时表11。若用分化后表达的探针形式的基因, 心肌肌钙蛋白I在阶段28-30,例如( 图1C),分化的器官的存在或大小可以在任何阶段交分化进行评估。几年前,胚胎学家们能够基于早期胚胎12,13的组织学显着的知识,做这样的分析,但这些?…

Discussion

使用原位杂交技术来可视化特定基因的表达模式的能力仍然是最常用的方法,以确定在非洲爪蟾胚胎的特定器官或细胞类型。这是因为通过该技术提供若干优点。的基因的表达可以前充分分化的任何组织学征兆确定具体的结构,例如在之前的那些细胞18的任何明确划界的心脏祖细胞NKX2.5表达的情况。一旦所有的试剂是在手,它也是非常符合成本效益。许多个别的探针,…

Divulgations

The authors have nothing to disclose.

Acknowledgements

The authors would like to acknowledge the CIHR for fellowship support of Steve Deimling and the Department of Paediatrics, University of Western Ontario for support of Steve Deimling, Rami Halabi and Stephanie Grover. This work was supported by the NSERC grant R2654A11 and an NSERC Discovery Accelerator Supplement

Materials

Name of the reagent or equipment Company Catalogue number
Labguake Tube Shakers VWR 17-08-2011
VWR Vials VWR 10-07-2012
L-Cysteine BioShop CYS342.500
Ribonucleoside Triphosphate Set, 100mM Roche 11277057001
Digoxigenin-11-UTP Roche 11209256910
Rnase inhibator (Rnase OUT) Invitrogen  10777-019
T7 RNA Polymerase Fermentas EPO111
T3 RNA Polymerase Fermentas EPO101
SP6 RNA Polymerase Fermentas EPO131
Dnase 1 Invitrogen  18047-019
Sheep Serum  Wisent 31150
Blocking reagent Roche 11096176001
BM purple Ap Substrate Roche 11442094001
Anti-Digoxigenin-Ap Feb fragments Roche 11093274910
Methanol VWR CAMX0485-7
NaCl BioShop SOD002.10
SDS EM  7910
EDTA BioShop EDT001.500
Tris BioShop TRS003.5
Tween-20 EM  9480
MgSO4 Sigma M-2643
Mops BioShop MOP001.250
EGTA Sigma E-3889-25G
Paraformaldehyde BioShop PAR070.500 
Formamide  VWR     CAFX0420-4 
RNA Roche 10109223001
Maleic Acid  VWR     CAMX0100-3
tri-Sodium Citrate BioShop CIT001
Hydrogen Peroxide (30% Solution) EM  HX0635-2
BSA BioShop ALB001.100
PVP-40 ICN 195451
Ficoll 400 GE Healthcare 17-0300-10
Benzyl Alcohol Sigma B-1042
Benzyl Benzoate Sigma B-6630
UltraPure Agarose  Invitrogen  16500-500

References

  1. Ninomiya, H., et al. Cadherin-dependent differential cell adhesion in Xenopus causes cell sorting in vitro but not in the embryo. J Cell Sci. 125, 1877-1883 (2012).
  2. Movassagh, M., Philpott, A. Cardiac differentiation in Xenopus requires the cyclin-dependent kinase inhibitor, p27Xic1. Cardiovasc Res. 79, 436-447 (2008).
  3. Zhao, Y., et al. The expression of alphaA- and betaB1-crystallin during normal development and regeneration, and proteomic analysis for the regenerating lens in Xenopus laevis. Mol Vis. 17, 768-778 (2011).
  4. Harland, R. M. In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol. 36, 685-695 (1991).
  5. Kirilenko, P., Weierud, F. K., Zorn, A. M., Woodland, H. R. The efficiency of Xenopus primordial germ cell migration depends on the germplasm mRNA encoding the PDZ domain protein Grip2. Differentiation. 76, 392-403 (2008).
  6. Deimling, S. J., Drysdale, T. A. Fgf is required to regulate anterior-posterior patterning in the Xenopus lateral plate mesoderm. Mech Dev. , (2011).
  7. Fletcher, R. B., Harland, R. M. The role of FGF signaling in the establishment and maintenance of mesodermal gene expression in Xenopus. Dev Dyn. 237, 1243-1254 (2008).
  8. Sive, H. L., Grainger, R. M., Harland, R. M. . Early development of Xenopus laevis : a laboratory manual. , (2000).
  9. Park, E. C., Hayata, T., Cho, K. W., Han, J. K. Xenopus cDNA microarray identification of genes with endodermal organ expression. Dev Dyn. 236, 1633-1649 (2007).
  10. Horb, M. E., Slack, J. M. Endoderm specification and differentiation in Xenopus embryos. Dev Biol. 236, 330-343 (2001).
  11. Nieuwkoop, P. D., Faber, J. . Normal table of Xenopus laevis (Daudin) : a systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis. , (1994).
  12. Gebhardt, D. O., Nieuwkoop, P. D. The Influence of Lithium on the Competence of the Ectoderm in Ambystoma Mexicanum. J Embryol Exp Morphol. 12, 317-331 (1964).
  13. Nieuwkoop, P. D. Pattern formation in artificially activated ectoderm (Rana pipiens and Ambystoma punctatum). Dev Biol. 6, 255-279 (1963).
  14. Sato, S. M., Sargent, T. D. Molecular approach to dorsoanterior development in Xenopus laevis. Dev Biol. 137, 135-141 (1990).
  15. Smith, S. J., Kotecha, S., Towers, N., Latinkic, B. V., Mohun, T. J. XPOX2-peroxidase expression and the XLURP-1 promoter reveal the site of embryonic myeloid cell development in Xenopus. Mech Dev. 117, 173-186 (2002).
  16. Drysdale, T. A., Tonissen, K. F., Patterson, K. D., Crawford, M. J., Krieg, P. A. Cardiac troponin I is a heart-specific marker in the Xenopus embryo: expression during abnormal heart morphogenesis. Dev Biol. 165, 432-441 (1994).
  17. Carroll, T., Wallingford, J., Seufert, D., Vize, P. D. Molecular regulation of pronephric development. Curr Top Dev Biol. 44, 67-100 (1999).
  18. Tonissen, K. F., Drysdale, T. A., Lints, T. J., Harvey, R. P., Krieg, P. A. XNkx-2.5, a Xenopus gene related to Nkx-2.5 and tinman: evidence for a conserved role in cardiac development. Dev Biol. 162, 325-328 (1994).
  19. Davidson, L. A., Ezin, A. M., Keller, R. Embryonic wound healing by apical contraction and ingression in Xenopus laevis. Cell Motil Cytoskeleton. 53, 163-176 (2002).
  20. Hurtado, R., Mikawa, T. Enhanced sensitivity and stability in two-color in situ hybridization by means of a novel chromagenic substrate combination. Dev Dyn. 235, 2811-2816 (2006).
check_url/fr/51526?article_type=t

Play Video

Citer Cet Article
Deimling, S. J., Halabi, R. R., Grover, S. A., Wang, J. H., Drysdale, T. A. Understanding Early Organogenesis Using a Simplified In Situ Hybridization Protocol in Xenopus. J. Vis. Exp. (95), e51526, doi:10.3791/51526 (2015).

View Video