Summary

心脏异常的实验性自身免疫性心肌炎的无创性评估磁共振成像显微镜在鼠标

Published: June 20, 2014
doi:

Summary

This study demonstrates the successful establishment of magnetic resonance microscopy imaging as a non-invasive tool to assess the cardiac abnormalities in mice affected with autoimmune myocarditis. The data indicate that the technique can be used to monitor the disease-progression in live animals.

Abstract

心肌炎是心肌的炎症,但对疾病的影响的那些表演的临床表现只〜10%。研究心肌损伤的免疫事件,心肌炎的各种小鼠模型已被广泛使用。这项研究涉及实验性自身免疫性心肌炎(EAM)诱导的心肌肌球蛋白重链(MYHC)-α的A / J小鼠334-352段;受影响的动物培养淋巴细胞性心肌炎,但没有明显的临床症状。在这个模型中,磁共振显微镜(MRM)作为一种非侵入性方式的实用程序来确定显示在免疫的动物MYHC-α334-352心脏结构和功能改变。 EAM和健康的小鼠用9.4 T(400兆赫)89 mm垂直芯孔扫描仪配备了4厘米千足虫射频成像探头和100克/厘米三轴梯度成像。从麻醉动物用梯度回波为基础的电影脉冲序列被收购心脏图像,和阿尼玛LS是由呼吸和脉搏血氧饱和度监测。该分析显示,增加心室壁在EAM小鼠的厚度,并相应减少心室的内部直径,当与正常小鼠相比较。该数据表明,在发炎的心脏形态和功能变化可能是由MRM非侵入性地监测在活的动物。总之,MRM提供评估引起的感染性疾病的药物的心肌损伤的进展和回归,以及响应于治疗的优点。

Introduction

心脏衰竭是死亡的主要原因,心肌炎是心脏衰竭的青春少年1一个最主要的原因。患有心肌炎患者大多没有症状和疾病自发缓解2。然而,那些受影响的10-20%可发展为慢性疾病,导致扩张性心肌病(DCM)3。各种动物模型已经发展到研究心肌炎的免疫发病机制。这种疾病可以通过免疫动物与心肌肌球蛋白重链(MYHC)-α或其免疫显性肽片段或通过与病原体如柯萨奇病毒B3 4-9感染诱导的心肌炎敏感的A / J和Balb / c小鼠。这项研究涉及MYHC-α在A / J小鼠334-352引起的心肌炎。尽管显示心肌浸润,心肌炎影响的动物出现临床表现正常;诊断依据心脏炎症7的组织学评价ND超声心动图10。

磁共振显微镜(MRM)是一种常用的方法,得到心血管成像具有高分辨率的三维平面上,允许的功能细节,以评估微小血管的水平(高达10微米直径),但分辨能力的这种电平是无法实现与常规的磁共振成像(MRI)扫描程序,其中,该分辨率通常是获得可达1毫米11-14。 MRM提供了一个优点,因为它允许获得的高分辨率图像,以及在疾病过程14的早期时间点获得的性能参数。在临床上,MRM成像已被广泛应用于研究的病变心脏,肺或脑部15-17功能参数。在这项研究中,显示了一个使用MRM技术作为一种非侵入性工具,以确定受影响的自身免疫性心肌炎的A / J小鼠的心脏异常。具体来说,T他MRM成像允许的功能参数如左室(LV)舒张末期容积和射血分数(EF)以合理的准确性18定量。各参数的定义如下:LV舒张末期容积,血容量在左心室的舒张周期的结束,和射血分数,每搏输出量/舒张末期容积。使用对通过磁共振扫描器19获取的处理符合DICOM标准的心血管图像而开发的免费提供的分类软件进行数据分析。该数据显示在心肌炎动物的增加左心室壁的厚度,对应于左室舒张末期容积,每搏输出量和射血分数下降,与健康小鼠这些功能参数进行比较。

Protocol

操守准则: 所有动物的程序均按照实验动物的护理和使用的指导原则进行,并经内布拉斯加林肯,内布拉斯加州林肯大学。 1,诱导实验性自身免疫性心肌炎通过在1x磷酸盐缓冲盐水中,以2 mg/1.5 ml的终浓度溶解MYHC-α334-352制备肽溶液。 加入1无菌的1×PBS中的溶液,以含50μg冻干的PT,得到储备液浓度为50纳克/微升的小瓶中制备的…

Representative Results

在这份报告中,显示MRM技术的实用程序作为一种非侵入性的方式来确定受影响的与EAM动物的心的结构和功能改变。心肌炎诱导在A / J小鼠进行免疫的动物在CFA 7 MYHC-α334-352,并且将动物进行的MRM实验第21天免疫后。在活的动物异氟烷麻醉下使用89毫米垂直孔磁铁配备了三轴梯度(最大强度100克/厘米)的MRM成像进行9.4 T(400 MHz为质子)。球探图像被收购的定位和定位小鼠心脏中的视场的中心?…

Discussion

这项研究描述为一种非侵入性工具,以确定心脏异常的影响与自身免疫性心肌炎小鼠的MRM过程及其效用。由于EAM的组织学特征类似于人类感染后心肌炎小鼠模型通常用来描绘心肌损伤23-25 ​​的免疫机制。但是,患有心肌炎动物出现临床表现正常,诊断是基于在组织学实验7终止进行。动物通常是牺牲在21天接种后。评估这样的疾病过程在单个时间点的限制使用这些模型,尤其是在…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This work was supported by the National Institutes of Health (HL114669). CM is a recipient of a postdoctoral research fellowship grant awarded by the Myocarditis Foundation, NJ.

Materials

Myhc-a 334-352 (DSAFDVLSFTAEEKAGVYK) Neopeptide, Cambridge, MA Store at 4οC
CFA Sigma Aldrich, St Louis, MO 5881 Store at 4οC
MTB  H37Rv extract  Difco Laboratories, Detroit, MI 231141 Store at 4οC
PT List Biologicals Laboratories, Campbell, CA 181 Store at 4οC
1x PBS  Corning, Manassas, VA 21-040-CV Store at 4οC
Isoflurane  Piramal Healthcare, Mumbai, India NDC66794-013-25
Female A/J mice  Jackson Laboratories, Bar Harbor, ME 646
Leur-lok sterile 1 ml syrringe BD, Franklin Lakes, NJ 309628
Leur-lok sterile 3 ml syrringe BD, Franklin Lakes, NJ 309657
Sterile needle, 18 G BD, Franklin Lakes, NJ 305195
Sterile needle, 27 1/2 G BD, Franklin Lakes, NJ 305109
3-way stopcock  Smiths Medical ASD, Inc. Dublin, OH MX5311L
Kerlix gauze bandage rolls  Covidien, Mansfield, MA 6720
Kimwipes Kimberly-Clark Professional, Roswell, GA 34155
Protouch Stockinette  Medline Industries, Mundelein, IL 30-1001
Sterile surgical scissors and forceps INOX tool Corporation
Micro oven GE Healthcare, 
ThermiPAQ hot and cold therapy system  Theramics Corporation, Springfield, IL
Reptile heating lamp  Energy Savers Unlimited, Inc. Carson, CA
3M Transpore tapes  Target Corporation, MN
Up and Up Polymyxin B sulfate/Bacitracin/Neomycin sulfate antibiotic ointment Target Corporation, MN
North Safety DeciDamp-2PVC foam ear plugs North Safety Products, Smithfield, RI
Cotton tipped applicator, 6’’ wooden stem  Jorgensen Laboratories, Inc. Loveland, CO
Anesthesia induction chamber  Summit Anesthesia Solutions, Ann Harbor, MI
Summit Anesthesia Support system for regulating flow of anesthesia  Summit Anesthesia Solutions, Ann Harbor, MI
Specially designed animal holder Agilent Technologies, Santa Clara, CA
Bickford Omnicon F/Air anesthesia gas filter unit  A.M. Bickford, Inc. Wales Center, NY
Pulse-oximeter module, MR compatible small animal monitoring and gating system  Small Animal Instruments, Inc. Stony Brook, NY
Oxygen cylinder  Matheson-Tri Gas, North-Central Zone, Lincoln, NE
Gas regulator  Western Medica, West Lake, OH
Signal breaking module, MR compatible small animal monitoring and gating system Small Animal Instruments, Inc. Stony Brook, NY
9.4 T (400 MHZ) 89 mm vertical core bore MR scanner  Agilent Technologies, Santa Clara, CA
4-cm millipede micro-imaging RF coil  Agilent Technologies, Santa Clara, CA
SAM PC monitor  Small Animal Instruments, Inc. Stony Brook, NY
Quantitative Medical Image analysis software  http://segment.heiberg.se;  Segment v1.8 R1430,  Medviso, Oresunds region, Sweden
Matlab software  The Mathworks, Inc.  Natick, MA
Computer-Unix operating system

References

  1. Heidenreich, P. A., et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 123 (8), 933-944 (2011).
  2. Fujinami, R. S., et al. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev. 19 (1), 80-94 (2006).
  3. Cihakova, D., Rose, N. R. Pathogenesis of myocarditis and dilated cardiomyopathy. Adv Immunol. 99, 95-114 (2008).
  4. Donermeyer, D. L., et al. Myocarditis-inducing epitope of myosin binds constitutively and stably to I-Ak on antigen-presenting cells in the heart. J Exp Med. 182 (5), 1291-1300 (1995).
  5. Gangaplara, A., et al. Coxsackievirus B3 infection leads to the generation of cardiac myosin heavy chain-alpha-reactive CD4 T cells in A/J mice. Clin Immunol. 144 (3), 237-249 (2012).
  6. Huber, S. A., Lodge, P. A. Coxsackievirus B-3 myocarditis in Balb/c mice. Evidence for autoimmunity to myocyte antigens. Am J Pathol. 116 (1), 21-29 (1984).
  7. Massilamany, C., et al. Identification of novel mimicry epitopes for cardiac myosin heavy chain-alpha that induce autoimmune myocarditis in A/J mice. Cell Immunol. 271, 438-449 (2011).
  8. Pummerer, C. L., et al. Identification of cardiac myosin peptides capable of inducing autoimmune myocarditis in BALB/c mice. J Clin Invest. 97 (9), 2057-2062 (1996).
  9. Rose, N. R., Hill, S. L. The pathogenesis of postinfectious myocarditis. Clin Immunol Immunopathol. 80, (1996).
  10. Saraste, A., et al. Coronary flow reserve and heart failure in experimental coxsackievirus myocarditis. A transthoracic Doppler echocardiography study. Am J Physiol Heart Circ Physiol. 291, (2006).
  11. Altes, T. A., et al. Hyperpolarized 3He MR lung ventilation imaging in asthmatics: preliminary findings. J Magn Reson Imaging. 13 (3), 378-384 (2001).
  12. Driehuys, B., et al. Small animal imaging with magnetic resonance microscopy. ILAR J. 49 (1), 35-53 (2008).
  13. Smith, B. R. Magnetic resonance microscopy with cardiovascular applications. Trends Cardiovasc Med. 6 (8), 247-254 (1996).
  14. Potter, K. Magnetic resonance microscopy approaches to molecular imaging: sensitivity vs specificity. J Cell Biochem Suppl. 39, 147-153 (2002).
  15. Benveniste, H., Blackband, S. MR microscopy and high resolution small animal MRI: applications in neuroscience research. Prog Neurobiol. 67, 393-420 (2002).
  16. Epstein, F. H., et al. MR tagging early after myocardial infarction in mice demonstrates contractile dysfunction in adjacent and remote regions. Magn Reson Med. 48 (2), 399-403 (2002).
  17. Gewalt, S. L., et al. MR microscopy of the rat lung using projection reconstruction. Magn Reson Med. 29 (1), 99-106 (1993).
  18. Kern, M. J. . The cardiac catheterization handbook., Edn 5th. , (2011).
  19. Heiberg, E., et al. Design and validation of Segment–freely available software for cardiovascular image analysis. BMC Med Imaging. 10, (2010).
  20. Cranney, G. B., et al. Left ventricular volume measurement using cardiac axis nuclear magnetic resonance imaging. Validation by calibrated ventricular angiography. Circulation. 82 (1), 154-163 (1990).
  21. Hiba, B., et al. Cardiac and respiratory double self-gated cine MRI in the mouse at 7 T. Magn Reson Med. 55 (3), 506-513 (2006).
  22. Bryant, D., et al. Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation. 97 (14), 1375-1381 (1998).
  23. Neu, N., et al. Cardiac myosin-induced myocarditis as a model of postinfectious autoimmunity. Eur Heart J. 12 Suppl D, 117-120 (1991).
  24. Neumann, D. A., et al. Induction of multiple heart autoantibodies in mice with coxsackievirus B3- and cardiac myosin-induced autoimmune myocarditis. J Immunol. 152 (1), 343-350 (1994).
  25. Rose, N. R., et al. Postinfectious autoimmunity: two distinct phases of coxsackievirus B3-induced myocarditis. Ann N Y Acad Sci. 475, 146-156 (1986).
  26. Farmer, J. B., Levy, G. P. A simple method for recording the electrocardiogram and heart rate from conscious animals. Br J Pharmacol Chemother. 32 (1), 193-200 (1968).
check_url/fr/51654?article_type=t

Play Video

Citer Cet Article
Massilamany, C., Khalilzad-Sharghi, V., Gangaplara, A., Steffen, D., Othman, S. F., Reddy, J. Noninvasive Assessment of Cardiac Abnormalities in Experimental Autoimmune Myocarditis by Magnetic Resonance Microscopy Imaging in the Mouse. J. Vis. Exp. (88), e51654, doi:10.3791/51654 (2014).

View Video