Summary

Biokemiske analyser til analyse Aktiviteter af ATP-afhængige Kromatin- Remodeling Enzymer

Published: October 25, 2014
doi:

Summary

Here we describe biochemical assays that can be used to characterize ATP-dependent chromatin remodeling enzymes for their abilities to 1) catalyze ATP-dependent nucleosome sliding, 2) engage with nucleosome substrates, and 3) hydrolyze ATP in a nucleosome- or DNA-dependent manner.

Abstract

Members of the SNF2 family of ATPases often function as components of multi-subunit chromatin remodeling complexes that regulate nucleosome dynamics and DNA accessibility by catalyzing ATP-dependent nucleosome remodeling. Biochemically dissecting the contributions of individual subunits of such complexes to the multi-step ATP-dependent chromatin remodeling reaction requires the use of assays that monitor the production of reaction products and measure the formation of reaction intermediates. This JOVE protocol describes assays that allow one to measure the biochemical activities of chromatin remodeling complexes or subcomplexes containing various combinations of subunits. Chromatin remodeling is measured using an ATP-dependent nucleosome sliding assay, which monitors the movement of a nucleosome on a DNA molecule using an electrophoretic mobility shift assay (EMSA)-based method. Nucleosome binding activity is measured by monitoring the formation of remodeling complex-bound mononucleosomes using a similar EMSA-based method, and DNA- or nucleosome-dependent ATPase activity is assayed using thin layer chromatography (TLC) to measure the rate of conversion of ATP to ADP and phosphate in the presence of either DNA or nucleosomes. Using these assays, one can examine the functions of subunits of a chromatin remodeling complex by comparing the activities of the complete complex to those lacking one or more subunits. The human INO80 chromatin remodeling complex is used as an example; however, the methods described here can be adapted to the study of other chromatin remodeling complexes.

Introduction

SnF2 familie kromatin remodeling komplekser indbefatter en central SnF2-lignende ATPase underenhed 1,2. Nogle SnF2-lignende ATPaser funktion som enkelt subunit enzymer, mens andre fungere som den katalytiske underenhed af større multi-subunit-komplekser. Belyse de molekylære mekanismer, som hver af de underenheder af kromatin remodeling komplekser bidrage til deres aktiviteter kræver evnen til at udføre biokemiske analyser, der dissekerer remodeling proces.

ATP-afhængig nukleosom remodellering af den menneskelige INO80 kompleks og andre chromatin remodeling enzymer kan forudses som en multi-trins proces, der begynder med binding af remodeling enzym til nukleosomer, efterfulgt af aktivering af dens DNA- og / eller nukleosom-afhængig ATPase, translokation af ombygningen enzymet på nukleosomal DNA og eventuel repositionering af nucleosomer 1,2. Forståelse af de molekylære detaljer i ATP-afhængig kromatin remodellering proces requires dissektion af ombygningen reaktion i sine enkelte trin og definition af bidrag fra de enkelte underenheder af kromatin remodeling komplekse til hvert trin af reaktionen. Sådanne analyser kræver evnen til at analysere nukleosom ombygninger og andre aktiviteter ved hjælp af definerede molekylære substrater in vitro.

I en tidligere JOVE protokol, vi beskrev procedurer, der anvendes til at generere INO80 kromatin remodeling komplekser og subcomplexes med definerede subunit kompositioner 3. Her præsenterer vi tre biokemiske analyser, der muliggør kvantitativ analyse af nukleosom bindende DNA- og nukleosom aktiveret ATPase, og nukleosom remodeling aktiviteter i forbindelse med sådanne komplekser.

Protocol

1. ATP-afhængige nukleosom Remodeling assays Til måling af ATP-afhængig nukleosom remodeling aktiviteter immunooprenset INO80 eller INO80 subcomplexes inkuberes med ATP og en mononucleosomal substrat, som indeholder en enkelt nukleosom placeret ved den ene ende af et 216 bp, 32P-mærket DNA-fragment. Reaktionsprodukterne underkastes derefter elektroforese i native poly-acrylamid-geler. For at generere 32P-mærket, 601 'DNA-fragment, forstærke fra pGEM…

Representative Results

Tallene viser repræsentative resultater af biokemiske assays, der anvendes til at karakterisere INO80, herunder nukleosom glidende (figur 1), og binding (figur 2) assays og DNA- eller nukleosom-afhængig ATPase-assays (figur 3). Den i figur 1 viste eksperiment sammenligner evnen af intakte INO80 komplekser renses ved FLAG-Ies2 eller FLAG-INO80E og INO80 subcomplexes renses ved enten FLAG-Ino80ΔN eller Ino80ΔNΔHSA at kata…

Discussion

For at sikre at nukleosom remodeling og ATPase-aktiviteter, vi observerer i assays afhænger af den katalytiske aktivitet af INO80 komplekser, og ikke på kontaminerende remodeling og / eller ATPase-enzymer, vi rutinemæssigt assay nukleosom remodeling og ATPase-aktivitet af katalytisk inaktive versioner af INO80 komplekser oprenses i parallelt med vildtype INO80 efter samme procedure. En negativ kontrol reaktion mangler ATP skal også udføres, når analyse nukleosom remodeling aktivitet at teste for tilstedeværelsen …

Divulgations

The authors have nothing to disclose.

Acknowledgements

Work in the authors’ laboratory is supported by a grant from the National Institute of General Medical Sciences (GM41628) and by a grant to the Stowers Institute for Medical Research from the Helen Nelson Medical Research Fund at the Greater Kansas City Community Foundation.

Materials

Name of Reagent/Material Company Catalog Number Comments
Protease Inhibitor Cocktail Sigma P8340
10x PCR reaction buffer  Roche Applied Science  11435094001
Roche Taq DNA Polymerase Roche Applied Science  11435094001
NucAway Nuclease-free Spin Columns  Ambion Cat. # AM10070
ultrapure ATP  USB/Affymetrix 77241 25 UM
bovine serum albumin  Sigma A9418 
N,N,N´,N´-tetramethylethylenediamine (TEMED) Thermo Scientific 17919 Fisher Scientific
40% Acrylamide/Bis 37.5:1 Amresco 0254-500ML
Sonicated salmon sperm DNAs  GE Healthcare 27-4565-01
10% ammonium persulfate (APS) Thermo Scientific 17874
benzonase  Novagen Cat. No. 70664
[α-32P] ATP (3000 Ci/mmol) PerkinElmer BLU003H250UC
dCTP, [α-32P]- 6000Ci/mmol PerkinElmer BLU013Z250UC
Equipment Company
PCR thermal cycler PTC 200 MJ Research PTC 200
Hoefer vertical electrophoresis unit Hoefer SE600X-15-1.5
lubricated 1.5ml microcentrifuge tubes  Costar 3207
Storage Phosphor Screen  Molecular Dynamics 63-0034-79
3MM filter paper Whatman  28458-005 VWR
Typhoon PhosphorImager  GE Healthcare 8600
ImageQuant software GE Healthcare ver2003.02
TLC Glass Plates, PEI-Cellulose F Millipore 5725-7
Immobilon-FL Transfer Membrane 7 x 8.4 Millipore IPFL07810
General purpose survey meter with end-window or pancake GM (Geiger-Mueller) probe Biodex Model 14C

References

  1. Clapier, C. R., Cairns, B. R. The biology of chromatin remodeling complexes. Annual Review of Biochemistry. 78, 273-304 (2009).
  2. Narlikar, G. J., Sundaramoorthy, R., Owen-Hughes, T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell. 154 (3), 490-503 (2013).
  3. Chen, L., Ooi, S. K., Conaway, J. W., Conaway, R. C. Generation and purification of human INO80 chromatin remodeling complexes and subcomplexes. , (2013).
  4. Lowary, P. T., Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J. Mol. Biol. 276 (1), (1006).
  5. Owen-Hughes, T., et al. Analysis of nucleosome disruption by ATP-driven chromatin remodeling complexes. Methods Mol. Biol. 119, 319-331 (1999).
  6. Udugama, M., Sabri, A., Bartholomew, B. The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor. Mol. Cell Biol. 31 (4), 662-673 (2011).
  7. Jin, J., et al. A mammalian chromatin remodeling complex with similarities to the yeast INO80 complex. Journal of Biological Chemistry. 280 (50), 41207-41212 (1074).
  8. Chen, L., et al. Subunit organization of the human INO80 chromatin remodeling complex: an evolutionarily conserved core complex catalyzes ATP-dependent nucleosome remodeling. Journal of Biological Chemistry. 286 (13), 11283-11289 (2011).
  9. Hamiche, A., Sandaltzopoulos, R., Gdula, D. A., Wu, C. ATP-dependent histone octamer sliding mediated by the chromatin remodeling complex NURF. Cell. 97 (7), 833-842 (1999).
  10. Polach, K. J., Widom, J. Restriction enzymes as probes of nucleosome stability and dynamics. Methods Enzymol. 304, 278-298 (1999).
  11. Anderson, J. D., Thastrom, A., Widom, J. Spontaneous access of proteins to buried nucleosomal DNA target sites occurs via a mechanism that is distinct from nucleosome translocation, Mol.Cell Biol. 22 (20), 7147-7157 (2002).
  12. Saha, A., Wittmeyer, J., Cairns, B. R. Chromatin remodeling through directional DNA translocation from an internal nucleosomal site. Nature Structural and Molecular Biology. 12 (9), 747-755 (2005).
  13. Gottschalk, A. J., et al. Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler, Proc.Natl.Acad.Sci.U.S.A. 106 (33), 13770-13774 (2009).
  14. Clapier, C. R., Cairns, B. R. Regulation of ISWI involves inhibitory modules antagonized by nucleosomal epitopes. Nature. 492 (7428), 280-284 (2012).
  15. Brune, M., Hunter, J. L., Corrie, J. E. T., Direct Webb, M. R. Real-Time Measurement of Rapid Inorganic Phosphate Release Using a Novel Fluorescent Probe and Its Application to Actomyosin Subfragment 1 ATPase, Biochemistry. 33 (27), 8262-8271 (1994).
  16. Luk, E., et al. Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome. Cell. 143 (5), 725-736 (2010).
check_url/fr/51721?article_type=t

Play Video

Citer Cet Article
Chen, L., Ooi, S., Conaway, J. W., Conaway, R. C. Biochemical Assays for Analyzing Activities of ATP-dependent Chromatin Remodeling Enzymes. J. Vis. Exp. (92), e51721, doi:10.3791/51721 (2014).

View Video