Summary

神経回路基盤記憶形成を解剖するための新生児ラットの左右で非対称匂い学習モデル

Published: August 18, 2014
doi:

Summary

This protocol introduces lateralized early odor preference learning in rats using acute single naris occlusion. Lateralized learning permits the examination of behavioral outcomes and underpinning biological mechanisms within the same animals, reducing variance induced by between-animal designs. This protocol can be used to investigate molecular mechanisms underpinning early odor learning.

Abstract

Rat pups during a critical postnatal period (≤ 10 days) readily form a preference for an odor that is associated with stimuli mimicking maternal care. Such a preference memory can last from hours, to days, even life-long, depending on training parameters. Early odor preference learning provides us with a model in which the critical changes for a natural form of learning occur in the olfactory circuitry. An additional feature that makes it a powerful tool for the analysis of memory processes is that early odor preference learning can be lateralized via single naris occlusion within the critical period. This is due to the lack of mature anterior commissural connections of the olfactory hemispheres at this early age. This work outlines behavioral protocols for lateralized odor learning using nose plugs. Acute, reversible naris occlusion minimizes tissue and neuronal damages associated with long-term occlusion and more aggressive methods such as cauterization. The lateralized odor learning model permits within-animal comparison, therefore greatly reducing variance compared to between-animal designs. This method has been used successfully to probe the circuit changes in the olfactory system produced by training. Future directions include exploring molecular underpinnings of odor memory using this lateralized learning model; and correlating physiological change with memory strength and durations.

Introduction

嗅覚は、彼らが正常に移動したり、その環境の中で生き残ることができないであろうことなく、げっ歯類における一次感覚モダリティである。これは、1を養うために母親を見つけるために嗅覚を使用するために、最初の出生後の週の間に見ることも聞くこともできない新生児の仔、特に重要である。その結果、新生仔ラットの仔は、簡単な実験操作で臭いを好むように調整することができる。さまざまな刺激は、ネスティング環境2,3を含む新生児、ミルク授乳4-6、なでたり触覚刺激7で(条件刺激、CS)小説臭いに調整応答を誘導することが無条件刺激(UCS)として使用されている12、テールピンチ13、母性唾液13、穏やかなフットショック14-18、および頭蓋脳刺激19。本研究は、私は、この場合はペパーミントに、十分に確立された初期の匂いの嗜好パラダイム請求臭気を採用ペパーミント24時間後10,11,20に対する選好を生成するために、触覚刺激と組み合わせることよ。これらの悪臭メモリは、主に嗅球(OB)21〜23と前梨状皮質(APC)24,25を含め、無傷の嗅覚回路に依存している。

初期の匂いの嗜好学習の実験的研究は、深めおよび哺乳類メモリの分子および生理学的基盤の理解を広げてきた。この哺乳動物モデルは、メモリメカニズムを研究するいくつかの利点を有する。まず、UCS信号の神経源が同定されている。前述のようにさまざまな刺激が順番に22,27,28の学習サポート細胞および生理学的効果を引き起こし、OBおよびAPCで複数のアドレナリン受容体を活性化させる軌跡青斑のノルエピネフリン放出26を刺激する。次に、メモリ支持機構は明確に定義された層状の神経構造に起こる。ザ·新生ラットにおける嗅覚回路のシンプルさがシナプス可塑性に関連する複雑なプロセスを明らかにした理想的なフレームワークを研究者に提供します。他の構造29の中で、OBと同側外側嗅索(LOT) を介して梨状皮質(PC)へのターンプロジェクトでこれらの僧帽/房状細胞での僧帽/房状細胞への嗅上皮プロジェクト内の嗅覚感覚ニューロン(OSN)、。 OB中OSNシナプスの両方が30,31およびAPCにおけるLOTシナプス24,25学習および記憶をサポートするシナプスの変化に重要な遺伝子座として同定されている。第三に、ラットでの初期の時代に、嗅覚の入力が容易に左​​右で非対称にすることができます。この白質が完全に生後12日目(PD12)32が形成されると、各APCは前交連を介した二国間の匂い情報へのアクセスを持っています。 PD 12の前に、臭気の入力は、<単一鼻孔閉塞24,25,31,33,34を通じてOBとAPCをipisilateralする単離することができる/ SUP>。シングル鼻孔閉塞はオープン鼻孔から臭気記憶形成を可能にし、前に、PD 12〜33に閉塞鼻孔から同じメモリを防ぐことができます。臭気メモリはOBおよびAPCの両方を含む同側半球に分離されている。したがって、各ラットの仔は生理学を学び、支えるためにそれ自体の制御することができます。

本研究では、左右で非対称に早期臭気嗜好学習プロトコルが導入される。この方法は、それによって必要な動物の数と一般バリエーションの両方を削減、内動物管理24,25,31を提供することにより、臭気の学習を支える神経機構を研究するための強力なツールとして機能します。鼻孔の閉塞は、グリースまたは鼻栓を適用し、最小限のストレス又は動物への損傷を除去することができるという点で可逆的である。ここでは、まず、初期の臭気の好みのトレーニングとテストの詳細な手順は、第持つ単一の鼻孔閉塞を使用して左右で非対称プロトコルを中心に記載されているEプラグ。その後、結果は、臭気入力を単離し、左右で非対称臭気メモリを製造する際に、単一の鼻孔の閉塞の有効性を実証するために提示される。最後に、両方の学習とサポートメモリ表現を生成する嗅覚系における生理学的変化を研究するために、この左右で非対称に学習モデルを使用しての電位が議論されている。

Protocol

男女のスプラーグドーリーラット(チャールズリバー)の仔が使用されている。同腹仔は、PD1(誕生PD0である)で12に淘汰されている。ダムは食料と水は自由に摂取させ 、12時間の明/暗サイクルで維持されている。実験手順は、メモリアル大学の動物実験委員会によって承認されている。 1鼻プラグ建設注:この手順では、適応と?…

Representative Results

ここでは、臭気入力を分離して一方の半球に学ぶことに鼻孔閉塞の有効性、およびこの方法の可逆性を実証するために以前に確立された結果24の一部を確認します。 初期の匂いの嗜好トレーニング中のシングル鼻孔閉塞は左右で非対称臭気メモリ24につながる。メモリは免れ鼻孔( 図3)に限定されている。子犬を訓練中のように閉塞同じ鼻?…

Discussion

重要な時間ウィンドウ内仔ラットにおける左右で非対称匂い学習と記憶モデルは、第1のホールらによって設立されました。研究33,34,36のシリーズでは、それらは、臭気嗜好メモリは仔ラットにおけるPD 6に一つの鼻孔に臭気+ミルクペアによって左右で非対称にできることを示した。優先メモリは同じ鼻孔がトレーニングやテスト中に開いていた際に堅調に推移しましたが、閉塞した鼻…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This work was supported by a CIHR operating grant (MOP-102624) to Q. Y. We thank Dr Carolyn Harley for helpful discussions throughout the study, Dr. Qinlong Hou, Amin Shakhawat, and Andrea Darby-King for technical support.

Materials

Polythylene 20 tubing Intramedic 427406 Non radiopaque, Non toxic
3-0 silk suture thread Syneture Sofsilk Non absorbant 
Silicone grease Warner Instrument 64-0378 Odorless
2% xylocaine gel AstraZeneca Prod. No 061 Lidocaine hydrochloride jelly,  purchased at local pharmacy
Paint brush Dynasty 206R Similar size/other brands work too
Peppermint extract Sigma-Aldrich W284807 Other brand should be okay too
Training box Custom-made N/A Acrylic box (20x20x5cm3), see Figure 2A. Parameters and material for the box are not critical and can be modified. Material used should be odorless and does not absorb odors
Testing chamber Custom-made N/A Stainless steel (30x20x18cm3), see Figure 2B. Parameters and material for the chamber are not critical and can be modified. For example, an acrylic chamber instead of a stainless steel one can be used
pCREB antibody Cell Signaling 9198 Ser 133 (87G3) Rabbit mAb
Chloral hydrate Sigma-Aldrich C8383 N/A
Paraformaldehype Sigma-Aldrich P6148 N/A
Sucrose Sigma-Aldrich S9378 N/A

References

  1. Gregory, E. H., Pfaff, D. W. Development of olfactory-guided behavior in infant rats. Physiol Behav. 6, 573-576 (1971).
  2. Alberts, J. R., May, B. Nonnutritive, thermotactile induction of filial huddling in rat pups. Dev Psychobiol. 17, 161-181 (1984).
  3. Galef, B. G., Kaner, H. C. Establishment and maintenance of preference for natural and artificial olfactory stimuli in juvenile rats. J Comp Physiol Psychol. 94, 588-595 (1980).
  4. Johanson, I. B., Hall, W. G. Appetitive learning in 1-day-old rat pups. Science. 205, 419-421 (1979).
  5. Johanson, I. B., Hall, W. G. Appetitive conditioning in neonatal rats: conditioned orientation to a novel odor. Dev Psychobiol. 15, 379-397 (1982).
  6. Johanson, I. B., Teicher, M. H. Classical conditioning of an odor preference in 3-day-old rats. Behav Neural Biol. 29, 132-136 (1980).
  7. McLean, J. H., Darby-King, A., Sullivan, R. M., King, S. R. Serotonergic influence on olfactory learning in the neonate rat. Behav Neural Biol. 60, 152-162 (1993).
  8. Moore, C. L., Power, K. L. Variation in maternal care and individual differences in play, exploration, and grooming of juvenile Norway rat offspring. Dev Psychobiol. 25, 165-182 (1992).
  9. Pedersen, P. E., Williams, C. L., Blass, E. M. Activation and odor conditioning of suckling behavior in 3-day-old albino rats. J Exp Psychol Anim Behav Process. 8, 329-341 (1982).
  10. Sullivan, R. M., Hall, W. G. Reinforcers in infancy: classical conditioning using stroking or intra-oral infusions of milk as UCS. Dev Psychobiol. 21, 215-223 (1988).
  11. Sullivan, R. M., Leon, M. Early olfactory learning induces an enhanced olfactory bulb response in young rats. Brain Res. 392, 278-282 (1986).
  12. Weldon, D. A., Travis, M. L., Kennedy, D. A. Posttraining D1 receptor blockade impairs odor conditioning in neonatal rats. Behav Neurosci. 105, 450-458 (1991).
  13. Sullivan, R. M., Hofer, M. A., Brake, S. C. Olfactory-guided orientation in neonatal rats is enhanced by a conditioned change in behavioral state. Dev Psychobiol. 19, 615-623 (1986).
  14. Camp, L. L., Rudy, J. W. Changes in the categorization of appetitive and aversive events during postnatal development of the rat. Dev Psychobiol. 21, 25-42 (1988).
  15. Moriceau, S., Wilson, D. A., Levine, S., Sullivan, R. M. Dual circuitry for odor-shock conditioning during infancy: corticosterone switches between fear and attraction via amygdala. J Neurosci. 26, 6737-6748 (2006).
  16. Roth, T. L., Sullivan, R. M. Endogenous opioids and their role in odor preference acquisition and consolidation following odor-shock conditioning in infant rats. Dev Psychobiol. 39, 188-198 (2001).
  17. Roth, T. L., Sullivan, R. M. Consolidation and expression of a shock-induced odor preference in rat pups is facilitated by opioids. Physiol Behav. 78, 135-142 (2003).
  18. Sullivan, R. M. Developing a sense of safety: the neurobiology of neonatal attachment. Ann N Y Acad Sci. 1008, 122-131 (2003).
  19. Wilson, D. A., Sullivan, R. M. Olfactory associative conditioning in infant rats with brain stimulation as reward. I. Neurobehavioral consequences. Brain Res Dev Brain Res. 53, 215-221 (1990).
  20. Sullivan, R. M., Wilson, D. A., Leon, M. Associative Processes in Early Olfactory Preference Acquisition: Neural and Behavioral Consequences. Psychobiology. , 29-33 (1989).
  21. McLean, J. H., Harley, C. W., Darby-King, A., Yuan, Q. pCREB in the neonate rat olfactory bulb is selectively and transiently increased by odor preference-conditioned training. Learn Mem. 6, 608-618 (1999).
  22. Sullivan, R. M., Stackenwalt, G., Nasr, F., Lemon, C., Wilson, D. A. Association of an odor with activation of olfactory bulb noradrenergic beta-receptors or locus coeruleus stimulation is sufficient to produce learned approach responses to that odor in neonatal rats. Behav Neurosci. 114, 957-962 (2000).
  23. Yuan, Q., Harley, C. W., McLean, J. H. Mitral cell beta1 and 5-HT2A receptor colocalization and cAMP coregulation: a new model of norepinephrine-induced learning in the olfactory bulb. Learn Mem. 10, 5-15 (2003).
  24. Fontaine, C. J., Harley, C. W., Yuan, Q. Lateralized odor preference training in rat pups reveals an enhanced network response in anterior piriform cortex to olfactory input that parallels extended memory. J Neurosci. 33, 15126-15131 (2013).
  25. Morrison, G. L., Fontaine, C. J., Harley, C. W., Yuan, Q. A role for the anterior piriform cortex in early odor preference learning: evidence for multiple olfactory learning structures in the rat pup. J Neurophysiol. 110, 141-152 (2013).
  26. Nakamura, S., Kimura, F., Sakaguchi, T. Postnatal development of electrical activity in the locus ceruleus. J Neurophysiol. 58, 510-524 (1987).
  27. Harley, C. W., Darby-King, A., McCann, J., McLean, J. H. Beta1-adrenoceptor or alpha1-adrenoceptor activation initiates early odor preference learning in rat pups: support for the mitral cell/cAMP model of odor preference learning. Learn Mem. 13, 8-13 (2006).
  28. Shakhawat, A. M., Harley, C. W., Yuan, Q. Olfactory bulb alpha2-adrenoceptor activation promotes rat pup odor-preference learning via a cAMP-independent mechanism. Learn Mem. 19, 499-502 (2012).
  29. Isaacson, J. S. Odor representations in mammalian cortical circuits. Curr Opin Neurobiol. 20, 328-331 (2010).
  30. Lethbridge, R., Hou, Q., Harley, C. W., Yuan, Q. Olfactory bulb glomerular NMDA receptors mediate olfactory nerve potentiation and odor preference learning in the neonate rat. PLoS One. 7, e35024 (2012).
  31. Yuan, Q., Harley, C. W. What a nostril knows: olfactory nerve-evoked AMPA responses increase while NMDA responses decrease at 24-h post-training for lateralized odor preference memory in neonate rat. Learn Mem. 19, 50-53 (2012).
  32. Schwob, J. E., Price, J. L. The development of axonal connections in the central olfactory system of rats. J Comp Neurol. 223, 177-202 (1984).
  33. Kucharski, D., Hall, W. G. New routes to early memories. Science. 238, 786-788 (1987).
  34. Kucharski, D., Johanson, I. B., Hall, W. G. Unilateral olfactory conditioning in 6-day-old rat pups. Behav Neural Biol. 46, 472-490 (1986).
  35. Cummings, D. M., Henning, H. E., Brunjes, P. C. Olfactory bulb recovery after early sensory deprivation. J Neurosci. 17, 7433-7440 (1997).
  36. Kucharski, D., Hall, W. G. Developmental change in the access to olfactory memories. Behav Neurosci. 102, 340-348 (1988).
  37. Brunjes, P. C. Unilateral odor deprivation: time course of changes in laminar volume. Brain Res Bull. 14, 233-237 (1985).
  38. Kass, M. D., Pottackal, J., Turkel, D. J., McGann, J. P. Changes in the neural representation of odorants after olfactory deprivation in the adult mouse olfactory bulb. Chem Senses. 38, 77-89 (2013).
  39. Kim, H. H., Puche, A. C., Margolis, F. L. Odorant deprivation reversibly modulates transsynaptic changes in the NR2B-mediated CREB pathway in mouse piriform cortex. J Neurosci. 26, 9548-9559 (2006).
  40. Korol, D. L., Brunjes, P. C. Rapid changes in 2-deoxyglucose uptake and amino acid incorporation following unilateral odor deprivation: a laminar analysis. Brain Res Dev Brain Res. 52, 75-84 (1990).
  41. Leung, C. H., Wilson, D. A. Trans-neuronal regulation of cortical apoptosis in the adult rat olfactory system. Brain Res. 984, 182-188 (2003).
check_url/fr/51808?article_type=t

Play Video

Citer Cet Article
Fontaine, C. J., Mukherjee, B., Morrison, G. L., Yuan, Q. A Lateralized Odor Learning Model in Neonatal Rats for Dissecting Neural Circuitry Underpinning Memory Formation. J. Vis. Exp. (90), e51808, doi:10.3791/51808 (2014).

View Video