Summary

نظام الثقافة الماوس الجنين الأمعاء الجامعة ل<em> فيفو السابقين</em> التلاعب في مسارات إشارات وتصوير لايف ثلاثي الأبعاد التنمية الزغبة

Published: September 04, 2014
doi:

Summary

Improved imaging technology is allowing three-dimensional imaging of organs during development. Here we describe a whole organ culture system that allows live imaging of the developing villi in the fetal mouse intestine.

Abstract

تم الاستدلال معظم عمليات التخلق في الأمعاء من الجنين أقسام رقيقة من الأنسجة الثابتة، وتوفير لقطات من التغيرات على مدى مراحل النمو. المعلومات ثلاثي الأبعاد من أقسام مسلسل رقيقة يمكن أن يكون تحديا لتفسير بسبب صعوبة إعادة بناء أقسام التسلسلية تماما والحفاظ على التوجه السليم للأنسجة على أقسام التسلسلية. النتائج الأخيرة من قبل غروس آخرون، 2011 تسليط الضوء على أهمية ثلاثية الأبعاد في فهم المعلومات التشكل من الزغب النامية في الأمعاء 1. أظهرت إعادة الإعمار ثلاثي الأبعاد من الخلايا المعوية المسمى منفردة أن غالبية الخلايا الظهارية في الأمعاء اتصل كل من الأسطح قمية والقاعدية. وعلاوة على ذلك، أظهرت إعادة الإعمار ثلاثي الأبعاد من الهيكل الخلوي الأكتين على السطح القمي من ظهارة أن لمعة الأمعاء مستمرة وأن شمعة الثانوية وقطعة أثرية من لياليectioning. تلك نقطتين، جنبا إلى جنب مع تظاهرة الهجرة النووية interkinetic في الظهارة المعوية، ويعرف ظهارة الأمعاء النامية بصفة ظهارة مطبقة كاذبة وليس طبقية كما كان يعتقد سابقا 1. كانت القدرة على مراقبة ظهارة ثلاثة الأبعاد-المنوية لإثبات هذه النقطة، وإعادة التشكل الظهارية في الأمعاء الجنين. مع تطور تكنولوجيا التصوير متعدد الفوتون وبرامج إعادة الإعمار ثلاثي الأبعاد، والقدرة على تصور سليم، وتطوير أجهزة يتحسن بسرعة. ثنائي الفوتون الإثارة تتيح اختراق أقل ضررا أعمق في الأنسجة مع ارتفاع القرار. التصوير ثنائي الفوتون وإعادة الإعمار 3D من الأمعاء بأكملها الماوس الجنين في التون وآخرون، 2012 ساعد على تحديد نمط زغابة ثمرة 2. نحن هنا وصف نظام الثقافة الجهاز كله الذي يسمح فيفو السابقين تطوير الزغب وملحقات هذا النظام للسماح للثقافةالأمعاء لتكون ثلاثة الأبعاد تصويرها خلال تنميتها.

Introduction

Each intestinal villus is composed of two main tissue compartments: an epithelial surface layer and a mesenchymal core. The mouse small intestine is formed at embryonic day 10 when a sheet of endoderm closes and seals to form a tube of epithelium surrounded by mesenchymal cells3. This flat tube of epithelium undergoes rapid proliferation, growing both in length and girth and undergoes dramatic rearrangements involving dynamic cell shape changes1. At the same time, the surrounding mesenchyme also undergoes many developmental processes including the formation of the vascular plexus, differentiation of smooth muscle and recruitment of enteric neurons4. In the proximal small intestine at embryonic day 14.5, condensations (clusters) of Hedgehog- and PDGF-responsive cells begin to form adjacent to the epithelium2,5. Formation of mesenchymal clusters continues to spread along the length of the intestine so that they cover the entirety of the small intestine by embryonic day 16.52. As mesenchymal clusters form, the epithelial cells closest to the clusters begin to withdraw from the cell cycle, while the other epithelial cells continue to proliferate. Those cells directly above the mesenchymal cluster that have withdrawn from the cell cycle begin to change shape as the emerging villus buckles into the lumen. Further growth of the villus is driven in part by the continued proliferation of the epithelium between the emerging villi. The mesenchymal clusters remain tightly adhered to the epithelium of the growing villus and continue to express a variety of signaling molecules. The wave of villus emergence propagates along the length of the small intestine following the formation of mesenchymal clusters. As the intestine continues to grow and the intervillus region extends between emerging villi, new mesenchymal clusters form adjacent to the intervillus epithelium and further rounds of villus emergence and growth ensue6.

Synchronized development of the epithelium and mesenchyme is essential for villus morphogenesis. Signaling molecules are secreted from one layer to the other where receptors receive and transduce the signal message in order to coordinate development between the epithelium and mesenchyme. Mesenchymal clusters act as signaling centers and express a variety of developmental morphogens7-10. Disruption of cluster formation or pattern results in loss of villus emergence and pattern. Inhibition of PDGF signaling results in fewer clusters and fewer villi and those villi that do form are misshapen following the abnormal clusters11. Loss of Hedgehog signaling results in complete loss of cluster formation and failure of villus emergence2,12. Together, these data demonstrate that clusters coordinate development of the villus epithelium with its mesenchymal core.

Using this whole organ culture system, we are able to alter signaling involved in epithelial-mesenchymal cluster cross-talk to determine the role of those signals in villus morphogenesis. Two-photon confocal optical sectioning and reconstruction afford the ability to visualize cluster formation and villus emergence in three-dimensions and better understand the spatial relationships between the mesenchymal clusters and their overlying epithelium. Extending the culture system to four dimensions, we can capture z-stacks of developing clusters and villi over time and observe these interactions. Ultimately, the ability to follow villus development in this manner and observe changes that occur with altered signaling will revolutionize the understanding of epithelial mesenchymal interactions in villus morphogenesis.

Protocol

ملاحظة: تم التعامل مع جميع الفئران إنسانية باستخدام بروتوكولات المعتمدة من قبل جامعة ميشيغان كلية الطب حدة لمختبر الطب الحيوانية وفقا للمبادئ التوجيهية للجنة الجامعة على استخدام ورعاية الحيوانات. 1. كامل نظام الجهاز ثقافة <ol styl…

Representative Results

في ثقافة Explants كاملة من أمعاء الجنين يسمح للتحليل الموقع، والتوزيع، ومدة الجزيئات مما يشير إلى أن تنسيق التنمية المعوية، حيث أن هذا النظام يمكن التلاعب في الإشارات مع الكواشف الدوائية أو البروتينات المؤتلف. نظام الثقافة transwell (الشكل 1A، مستنسخة من التون وآ?…

Discussion

الطبيعة الديناميكية والتفاعلات المعقدة للأنسجة الأمعاء وضع التصور 3D تتطلب أن يكون التقدير الكامل لهذه الأحداث التخلق. مع تطور تكنولوجيا التصوير، والقدرة على فحص زغابة التشكل بالتفصيل على تطوير / تحسين ومعها، وتعزيز فهم التواصل والتفاعل المكاني خلال توالد بشكل كبي?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

We gratefully acknowledge Dr. Deborah L. Gumucio as our advisor and for her invaluable support in defining the culture and imaging methods. We also thank Dr. Jim Brodie, Dr. Hong-Xiang Lu, Dr. Charlotte Mistretta, and Dr. Ann Grosse for their contributions to the development of the whole intestine organ culture system. Helpful discussions on imaging provided excellent advice from Dr. Chip Montrose, Michael Czerwinski and Sasha Meshinchi. All imaging was performed in the Microscopy and Image Analysis Laboratory at the University of Michigan. Funding support was provided by NIH R01 DK065850.

Materials

Fine dissecting forceps  Fine Science Tools  11254-20 2 pairs
70% Ethanol
1x sterile Dulbecco's Phosphate-Buffered Saline (DPBS) Gibco  14040-133 500 ml
6 well plates Costar 3516
24 well plates Costar  3524
60 x 15 mm petri dishes Falcon  451007
Transwell plates, 24 mm inserts, 8.0 mm polycarbonate membranes Corning Costar  3428 6 inserts per plate
BGJb media Invitrogen  12591-038 500 ml
PenStrep (10,000U/ml Penicillin; 10,000 mg/ml Streptomycin) Gibco  15140
Ascorbic Acid Sigma  A0278 make 5 mg/ml stock, filter, aliquot and store at -20 °C
Mouth pipet (Drummond 1-15 inch aspirator tube assembly) Fisher  21-180-10 remove the aspirator assembly and replace it with a 1000 µl pipet tip which acts as an adaptor to plug in a 6 inch glass Pasteur pipet.
6 inch glass pasteur pipets
Agarose beads BioRad  153-7301
Capillary Tubes World Precision Instruments  TW100F-4 pull to needles
4% Paraformaldehyde made in 1 x PBS, pH to 7.3
Live Imaging Materials
Name of Material/Equipment Company Catalog Number Comments/Description
Culture plates Falcon  353037
Fine mesh stainless steel screen purchase at hardware store
Polycarbonate membranes Thomas scientific  4663H25 alternatively, cut Corning Costar 3428 membranes off of transwell supports
Instant glue purchase at hardware store gel based preferrably
35 x 10 mm plates Falcon  351008
7% agarose Sigma  A9414 prepare w/v in 1x DPBS, heating to dissolve in a waterbath
minutien pins Fine Science Tools  26002-20
Phenol red free media (DMEM) Gibco  21063-029
Xylazine (100 mg/ml) AnaSed  139-236
Matrigel BD 356231 basement membrane matrix, growth factor reduced, phenol red-free
3-4% agarose Sigma  A9414 prepare w/v in 1x DPBS, heating to dissolve in a waterbath
Imaging of fixed intestines
Name of Material/Equipment Company Catalog Number Comments/Description
vaseline purchase at pharmacy used to make VALAP: equal parts vaseline, lanolin, paraffin
lanolin Sigma  L7387 used to make VALAP: equal parts vaseline, lanolin, paraffin
paraffin Surgipath 39601006 used to make VALAP: equal parts vaseline, lanolin, paraffin
70% glycerol in 1 x PBS
Focus clear and Mount Clear CelExplorer Labs Co.  F101-KIT
Modeling clay purchase at art supply store
double stick tape
cotton applicator swabs
plastic molds, 10mm x 10mm x 5 mm) Tissue Tek  4565
slides
coverslips
lab wipe Kimberly Clark 34155 lint free delicate task wipe
Theiler staging chart  http://www.emouseatlas.org/emap/ema/theiler_stages/ downloads/theiler2.pdf
Leica SP5X confocal microscope  Leica Used to conduct the live imaging 
Leica DMI 6000 stand  Leica Used to conduct the live imaging 
Aqueous mounting medium (Prolong Gold) Molecular Probes  P36930
Materials for Immunofluorescence staining of fixed, vibratome sectioned intestines
Name of Material/Equipment Company Catalog Number Comments/Description
24 well plate Costar  3524
Triton X-100 Sigma  T-8787 used to make Permeabilization solution: 0.5% Triton X-100 in 1 x PBS
Goat serum used to make Blocking Solution: 4% Goat serum, 0.1% Tween20 in 1x PBS
Tween20  Sigma  P9416

References

  1. Grosse, A. S., et al. Cell dynamics in fetal intestinal epithelium: implications for intestinal growth and morphogenesis. Development. 138, 4423-4432 (2011).
  2. Walton, K. D., et al. Hedgehog-responsive mesenchymal clusters direct patterning and emergence of intestinal villi. Proc Natl Acad Sci U S A. 109, 15817-15822 (2012).
  3. Wells, J. M., Melton, D. A. Vertebrate endoderm development. Annu Rev Cell Dev Biol. 15, 393-410 (1999).
  4. Hashimoto, H., Ishikawa, H., Kusakabe, M. Development of vascular networks during the morphogenesis of intestinal villi in the fetal mouse. Kaibogaku zasshi Journal of anatomy. 74, 567-576 (1999).
  5. Mathan, M., Moxey, P. C., Trier, J. S. Morphogenesis of fetal rat duodenal villi. Am J Anat. 146, 73-92 (1976).
  6. Burns, R. C., et al. Requirement for fibroblast growth factor 10 or fibroblast growth factor receptor 2-IIIb signaling for cecal development in mouse. Dev Biol. 265, 61-74 (2004).
  7. Pabst, O., Schneider, A., Brand, T., Arnold, H. H. The mouse Nkx2-3 homeodomain gene is expressed in gut mesenchyme during pre- and postnatal mouse development. Dev Dyn. 209, 29-35 (1997).
  8. Pabst, O., Zweigerdt, R., Arnold, H. H. Targeted disruption of the homeobox transcription factor Nkx2-3 in mice results in postnatal lethality and abnormal development of small intestine. Development. 126, 2215-2225 (1999).
  9. Kaestner, K. H., Silberg, D. G., Traber, P. G., Schütz, G. The mesenchymal winged helix transcription factor Fkh6 is required for the control of gastrointestinal proliferation and differentiation. Genes & Development. 11, 1583-1595 (1997).
  10. Madison, B. B., McKenna, L. B., Dolson, D., Epstein, D. J., Kaestner, K. H. FoxF1 and FoxL1 link hedgehog signaling and the control of epithelial proliferation in the developing stomach and intestine. J Biol Chem. 284, 5936-5944 (2009).
  11. Karlsson, L., Lindahl, P., Heath, J. K., Betsholtz, C. Abnormal gastrointestinal development in PDGF-A and PDGFR-(alpha) deficient mice implicates a novel mesenchymal structure with putative instructive properties in villus morphogenesis. Development. 127, 3457-3466 (2000).
  12. Mao, J., Kim, B., Rajurkar, M., Shivdasani, R., Mcmahon, A. Hedgehog signaling controls mesenchymal growth in the developing mammalian digestive tract. Development. 137, 1721-1729 (2010).
  13. Theiler, K. . The house mouse. Development and normal stages from fertilization to 4 weeks of age. , (1989).
  14. Hamilton, T. G., Klinghoffer, R. A., Corrin, P. D., Soriano, P. Evolutionary divergence of platelet-derived growth factor alpha receptor signaling mechanisms. Mol Cell Biol. 23, 4013-4025 (2003).
  15. Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L., Luo, L. A global double-fluorescent Cre reporter mouse. Genesis. 45, 593-605 (2007).
  16. Goodrich, L. V., Milenkovic, L., Higgins, K. M., Scott, M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science. 277, 1109-1113 (1997).
  17. Fu, Y. Y., et al. Microtome-free 3-dimensional confocal imaging method for visualization of mouse intestine with subcellular-level resolution. Gastroenterology. 137, 453-465 (2009).
check_url/fr/51817?article_type=t

Play Video

Citer Cet Article
Walton, K. D., Kolterud, Å. Mouse Fetal Whole Intestine Culture System for Ex Vivo Manipulation of Signaling Pathways and Three-dimensional Live Imaging of Villus Development. J. Vis. Exp. (91), e51817, doi:10.3791/51817 (2014).

View Video