Summary

器官切片文化研究少突胶质细胞动力学和髓鞘

Published: August 25, 2014
doi:

Summary

A technique to study NG2 cells and oligodendrocytes using a slice culture system of the forebrain and cerebellum is described. This method allows examination of the dynamics of proliferation and differentiation of cells within the oligodendrocyte lineage where the extracellular environment can be easily manipulated while maintaining tissue cytoarchitecture.

Abstract

NG2表达细胞(polydendrocytes,少突胶质细胞前体细胞)的第四个主要的神经胶质细胞群在中枢神经系统。在胚胎和出生后发育,他们积极地繁殖,并产生髓鞘少突胶质细胞。这些细胞通常被研究的初级分离培养,共培养神经元,并在固定的组织。使用新的可用的转基因小鼠系切片培养系统可被用于研究细胞增殖少突胶质谱系细胞的分化中的前脑和小脑的灰质和白质的区域。切片培养物从出生后早期小鼠制备的,并保持在培养达1个月。这些片可以在培养期间被多次成像研究细胞行为和交互作用。这种方法允许NG2细胞分裂的可视化,并导致少突胶质细胞分化,同时支持的详细分析步骤区域依赖耳鼻喉科NG2细胞和少突胶质细胞功能的异质性。这是一个功能强大的技术,可用于研究在它十分相似, 在生物体内发现了一个蜂窝环境影响,这些细胞随着时间的内在和外在的信号。

Introduction

中枢神经系统Organoytpic切片文化已被证明是研究神经元和神经胶质细胞生物学的semiintact系统1非常有用– 4。这些文化都比较简单采用和保留主要的游离细胞培养的诸多好处,如操控外环境,并易于进行反复长期活细胞成像和电生理记录5 – 9。此外,切片培养维持3维组织细胞结构,区域神经连接性,并且最重要的细胞类型是存在于系统中。这些特性使得这些文化独特而方便的系统研究单个细胞的行为和生理与细胞和环境的相互作用。

NG2细胞为神经胶质细胞在哺乳动物中枢神经系统中的继续增殖和产生微米的人口胚胎和出生后发育过程中10 yelinating少突胶质细胞。它们已被广泛研究中解离的原代细胞培养,以及最近的转基因小鼠系与荧光蛋白的NG2细胞特异性表达的发展促进了体内命运映射和电生理记录在急性切片准备。即使有了这些研究,知之甚少的NG2细胞增殖和少突胶质细胞分化的时间动态。虽然分离的细胞培养物被广泛用于在药理学和遗传操作相对设施,它不适合用于询问这些细胞在不同脑区的功能上的差异特别是当它是需要维持细胞微环境的上下文。切片培养提供了一个简单的替代方案,是适合于药理学操作,并已被用于研究少突胶质细胞髓鞘形成11,12,细胞溶血卵磷脂(LPC),或通过药物治疗15抗体诱发的脱髓鞘13,14,和诱导髓鞘再生后ular响应。

的方法进行调查,并进行实时成像和固定的组织(或postfixation)中描述的NG2细胞增殖和少突胶质细胞分化来自前脑和后脑取器官切片文化分析。这是一个可用于研究单个NG2细胞的细胞命运的除法16后,并发现在生长因子诱导的NG2细胞增殖17与地区和年龄依赖性差异的有效方法。这种相对简单的技术是普及进一步研究细胞的内在和/或环境调节这些神经胶质细胞的生理机能,他们的反应神经元的活动或髓鞘损伤的机制。

Protocol

注:所有动物的程序都遵循的指导方针,并已批准的机构动物照顾与使用委员会(IACUC)在康涅狄格大学。 注:对于这些实验组成NG2cre 18(JAX#008533),并诱导NG2creER 16(JAX#008538)的转基因小鼠杂交到Z / EG 19(JAX#003920)或gtRosa26:YFP记者20(JAX#006148)线分别使用到图像NG2细胞和它们的后代。图像成熟少突胶质细胞,PLPDsRed转基因小鼠21人使用。对于一致的存活率?…

Representative Results

具有代表性的数据的例子如下已使用切片培养从P8 NG2cre两者的前脑和小脑获得:ZEG,NG2creER:YFP和PLPDsRed转基因小鼠品系。 NG2细胞可以被成像在中前脑和小脑切片( 图1B-D视频1),并且这些细胞的表型天可以固定后进行测定,并与NG2和CC1的抗体( 图1E)的免疫染色。除了 ​​实时成像,细胞增殖,也可以用免疫组织化学染色对细胞增殖的标记物如Ki67表达( 图1F)</s…

Discussion

髓鞘在中枢神经系统是用于有效的神经元沟通和轴突存活22是必不可少的。 NG2细胞不断产生髓鞘少突胶质细胞到成年期,同时保持常住人口中大部分脑区16,23 – 25。调节这些细胞的分化一定的遗传和分子机制进行了描述,但仍有许多有待发现。器官切片培养物是一种方便的工具来调查这些机制,由于其独特的保持解剖区域,容易操纵的胞外环境中的,健壮的髓鞘形成,并且所有主?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This work was funded by grants from the National Multiple Sclerosis Society (RG4179 to A.N.), the National Institutes of Health (NIH R01NS073425 and R01NS074870 to A.N.) and the National Science Foundation (A.N.). We thank Dr. Frank Kirchhoff (University of Saarland, Homburg Germany) for providing PLPDsRed transgenic mice. We thank Youfen Sun for her assistance in maintaining the transgenic mouse colony.

Materials

Slice Culture Medium
Minimum Essential Medium Invitrogen 11090 50%
Hank’s Balanced Salt Solution Invitrogen 14175 25%
HEPES Sigma-Aldrich H-4034 25mM
L-Glutamine Invitrogen 25030 1mM
Insulin Sigma-Aldrich I6634 1mg/L
Ascorbic Acid Sigma-Aldrich A-0278 0.4mM
Horse Serum Hyclone SH30074.03 25%
Titrate to pH 7.22 with NaOH, filter with bottle top filter, and store at 4 degrees Celsius
Dissection Buffer
NaCl Sigma-Aldrich S3014 124mM
KCl Sigma-Aldrich P5405 3.004mM
KH2PO4 Sigma-Aldrich P5655 1.25mM
MgSO4 (anhydrous) Sigma-Aldrich M7506 4.004mM
CaCl2 2H2O Sigma-Aldrich C7902 2mM
NaHCO3 Sigma-Aldrich S5761 26mM
D-(+)-Glucose Sigma-Aldrich G7021 10mM
Ascorbic Acid Sigma-Aldrich A-0278 2.0mM
Adenosine Sigma-Aldrich A4036 0.075mM
Filter with bottle top filter and store at 4 degrees Celsius, oxygenate with 95%O2 5%CO2 before use
Other Reagents and Supplies
4-hydroxy tamoxifen (4OHT) Sigma-Aldrich H7904 100nM
Paraformaldehyde (PFA) EM Sciences 19200 4%
L-Lysine Sigma-Aldrich L-6027 0.1M
Sodium Metaperiodate Sigma-Aldrich S-1878 0.01M
Rabbit anti NG2 antibody Chemicon (Millipore) AB5320 1:500
Mouse anti CC1 antibody Calbiochem (Millipore) OP80 1:200
Mouse anti Ki67 antibody Vision Biosystems NCL-Ki67-MM1 1:300
Mouse anti NeuN antibody Chemicon (Millipore) MAB377 1:500
Species specific secondary antibodies Jackson Immunoresearch
Normal Goat Serum (NGS) 5%
Triton X-100 0.10%
Mounting medium with DAPI Vector Labs H-1200
Millicell culture membrane inserts 0.45μm pore size Fisher Scientific PICM03050
Bottle top filters Fisher Scientific 09-740-25E
Ethanol
95% O2 5% CO2 gas mix
Phosphate Buffered Saline (PBS)
Sterile six well plates
Dissecting (hippocampal) or weighing spatulas
Manual or automatic tissue chopper
Razor blades
Disposable transfer pipettes
35mm and 60mm sterile Petri dishes
Stereomicroscope
Inverted Phase Microscope
Laminar Flow Hood
Tissue Culture Incubator
Inverted Fluorescence Microcope

References

  1. Stoppini, L., Buchs, P. A., Muller, D. A simple method for organotypic cultures of nervous tissue. Journal of Neuroscience Methods. 37 (2), (1991).
  2. Gogolla, N., Galimberti, I., DePaola, V., Caroni, P. Preparation of organotypic hippocampal slice cultures for long-term live imaging. Nature Protocols. 1 (3), 1165-1171 (2006).
  3. Gähwiler, B. H., Capogna, M., Debanne, D., McKinney, R. A., Thompson, S. M. Organotypic slice cultures: a technique has come of age. Trends in Neurosciences. 20 (10), 471-477 (1997).
  4. Yamamoto, N., Kurotani, T., Toyama, K. Neural connections between the lateral geniculate nucleus and visual cortex in vitro. Science. 245 (4914), 192-194 (1989).
  5. Bahr, B. A., Kessler, M., et al. Stable maintenance of glutamate receptors and other synaptic components in long-term hippocampal slices. Hippocampus. 5 (5), 425-439 (1995).
  6. Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S., Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature. 409 (6821), 714-720 (2001).
  7. Noctor, S. C., Martínez-Cerdeño, V., Ivic, L., Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nature Neuroscience. 7 (2), (2004).
  8. Kapfhammer, J. P., Gugger, O. S. The analysis of purkinje cell dendritic morphology in organotypic slice cultures. Journal of Visualized Experiments JoVE. (61), (2012).
  9. Elias, L., Kriegstein, A. Organotypic slice culture of E18 rat brains. Journal of Visualized Experiments JoVE. (6), e235 (2007).
  10. Nishiyama, A., Komitova, M., Suzuki, R., Zhu, X. Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nature Reviews Neuroscience. 10 (1), 9-22 (2009).
  11. Haber, M., Vautrin, S., Fry, E. J., Murai, K. K. Subtype-specific oligodendrocyte dynamics in organotypic culture. Glia. 57 (9), 1000-1013 (2009).
  12. Bin, J. M., Leong, S. Y., Bull, S. -. J., Antel, J. P., Kennedy, T. E. Oligodendrocyte precursor cell transplantation into organotypic cerebellar shiverer slices: a model to study myelination and myelin maintenance. PloS one. 7 (7), (2012).
  13. Birgbauer, E., Rao, T. S., Webb, M. Lysolecithin induces demyelination in vitro in a cerebellar slice culture system. Journal of Neuroscience Research. 78 (2), 157-166 (2004).
  14. Harrer, M. D., von Budingen, H. C., et al. Live imaging of remyelination after antibody-mediated demyelination in an ex model for immune mediated CNS damage. Experimental Neurology. 216 (2), 431-438 (2009).
  15. Fancy, S. P. J., Harrington, E. P., et al. Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nature Neuroscience. 14 (8), 1009-1016 (2011).
  16. Zhu, X., Hill, R. A., Dietrich, D., Komitova, M., Suzuki, R., Nishiyama, A. Age-dependent fate and lineage restriction of single NG2 cells. Development. 138 (4), 745-753 (2011).
  17. Hill, R. A., Patel, K. D., Medved, J., Reiss, A. M., Nishiyama, A. NG2 Cells in White Matter But Not Gray Matter Proliferate in Response to PDGF. Journal of Neuroscience. 33 (36), 14558-14566 (2013).
  18. Zhu, X., Bergles, D. E., Nishiyama, A. NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development. 135 (1), 145-157 (2008).
  19. Novak, A., Guo, C., Yang, W., Nagy, A., Lobe, C. G. Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis. 28 (3-4), 147-155 (2000).
  20. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genetics. 21 (1), 70-71 (1999).
  21. Hirrlinger, P. G., Scheller, A., et al. Expression of reef coral fluorescent proteins in the central nervous system of transgenic mice. Molecular and Cellular Neuroscience. 30 (3), 291-303 (2005).
  22. Nave, K. -. A. Myelination and support of axonal integrity by glia. Nature. 468 (7321), 244-252 (2010).
  23. Rivers, L. E., Young, K. M., et al. PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nature Neuroscience. 11 (12), 1392-1401 (2008).
  24. Dimou, L., Simon, C., Kirchhoff, F., Takebayashi, H., Gotz, M. Progeny of Olig2-expressing progenitors in the gray and white matter of the adult mouse cerebral cortex. The Journal of Neuroscience. 28 (41), 10434-10442 (2008).
  25. Kang, S. H., Fukaya, M., Yang, J. K., Rothstein, J. D., Bergles, D. E. NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron. 68 (4), 668-681 (2010).
  26. Ioannidou, K., Anderson, K. I., Strachan, D., Edgar, J. M., Barnett, S. C. Time-lapse imaging of the dynamics of CNS glial-axonal interactions in vitro and ex vivo. PloS one. 7 (1), e30775 (2012).
  27. Ghoumari, A. M., Baulieu, E. E., Schumacher, M. Progesterone increases oligodendroglial cell proliferation in rat cerebellar slice cultures. Neurosciences. 135 (1), 47-58 (2005).
  28. Azim, K., Butt, A. M. GSK3β negatively regulates oligodendrocyte differentiation and myelination in vivo. Glia. 59 (4), 540-553 (2011).
  29. Hussain, R., El-Etr, M., et al. Progesterone and nestorone facilitate axon remyelination: a role for progesterone receptors. Endocrinology. 152 (10), 3820-3831 (2011).
  30. Pampaloni, F., Reynaud, E. G., Stelzer, E. H. K. The third dimension bridges the gap between cell culture and live tissue. Nature Reviews. Molecular Cell Biology. 8 (10), 839-845 (2007).
  31. Lubetzki, C., Demerens, C., et al. Even in culture, oligodendrocytes myelinate solely axons. Proceedings of the National Academy of Sciences of the United States of America. 90 (14), 6820-6824 (1993).
  32. Demerens, C., Stankoff, B., et al. Induction of myelination in the central nervous system by electrical activity. Proceedings of the National Academy of Sciences of the United States of America. 93 (18), 9887-9892 (1996).
  33. Wood, P. M., Bunge, R. P. Evidence that sensory axons are mitogenic for Schwann cells. Nature. 256 (5519), 662-664 (1975).
  34. Stevens, B., Tanner, S., Fields, R. D. Control of myelination by specific patterns of neural impulses. The Journal of Neuroscience. 18 (22), 9303-9311 (1998).
  35. Stevens, B., Porta, S., Haak, L. L., Gallo, V., Fields, R. D. Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron. 36 (5), 855-868 (2002).
  36. Wake, H., Lee, P. R., Fields, R. D. Control of local protein synthesis and initial events in myelination by action potentials. Science. 333 (6049), 1647-1651 (2011).
  37. Rosenberg, S. S., Kelland, E. E., Tokar, E., De la Torre, A. R., Chan, J. R. The geometric and spatial constraints of the microenvironment induce oligodendrocyte differentiation. Proceedings of the National Academy of Sciences of the United States of America. 105 (38), 14662-14667 (2008).
check_url/fr/51835?article_type=t

Play Video

Citer Cet Article
Hill, R. A., Medved, J., Patel, K. D., Nishiyama, A. Organotypic Slice Cultures to Study Oligodendrocyte Dynamics and Myelination. J. Vis. Exp. (90), e51835, doi:10.3791/51835 (2014).

View Video