Summary

探讨高密度功能蛋白微阵列来检测蛋白质 - 蛋白质相互作用

Published: August 02, 2015
doi:

Summary

使用含有几乎整个S.蛋白质芯片酵母蛋白质组被探查以十万计的蛋白质-蛋白质相互作用中并行快速无偏询问。这种方法可以用于蛋白质 – 小分子,翻译后修饰,并在高通量其它测定。

Abstract

含〜4200重组酵母蛋白的高密度功能蛋白微阵列检查使用含有用于读出一个V5表位标签的亲和纯化的酵母激酶融合蛋白激酶蛋白质 – 蛋白质相互作用。纯化激酶通过酵母菌株的高仿蛋白质生产带有含下GAL诱导启动子激酶-V5融合构建的质粒优化培养获得。酵母生长在限制性培养基用中性碳源为6小时,随后通过感应用2%半乳糖。接着,将培养物收获和激酶用标准亲和层析技术来获得用于在测定中使用高度纯化的蛋白激酶纯化。将纯化的激酶稀释激酶缓冲到一个适当的范围内用于测定和蛋白微阵列被阻断之前与蛋白质微阵列杂交。该杂交后,阵列探测用单克隆V5 antibODY鉴定蛋白质结合的由激酶-V5蛋白。最后,该阵列是利用标准的微阵列扫描仪扫描,并且数据被提取用于下游信息学分析1,2,以确定高置信度设置蛋白质相互作用的体内下游验证。

Introduction

执行蛋白质生物化学和结合的体内活性的全局分析的需要已导致对分析蛋白质-蛋白质相互作用(质子泵抑制剂)和整个蛋白质组1,3-8的翻译后修饰的新方法的发展。蛋白质微阵列被制造为包含抗体10,11-功能蛋白微阵列使用全长功能蛋白4-6,8,9,或分析蛋白质微阵列。它们被加工成含有高密度排列到显微镜载玻片用各种表面化学的蛋白,以促进所需的多种用于进行广泛的生化分析12的实验条件。硝化纤维素和醛的表面化学进行化学附着,通过赖氨酸或亲和力连接方法如镍螯合载玻片用于附His标签的蛋白质,谷胱甘肽对除其他13亲和力附件。 </p>

使用功能的蛋白质微阵列来检测蛋白质-蛋白质相互作用,需要获得一个高质量的功能性蛋白质库14。S.酵母是适合于通过高拷贝亲和力配对产生这样的库标记蛋白构建与高通量色谱纯化技术。酵母基因组的绝大部分已测序,几乎整个蛋白质组可以从高拷贝质粒纯化被表达和生化分析12。一旦蛋白被获得并排列在384孔格式,它们被打印到载玻片允许快速并行多参数生化分析和生物信息学的询问8,14-16。蛋白质微阵列已经用于酶测定和相互作用与蛋白质,脂质,小分子和核酸中的许多其它应用。蛋白质的蛋白质组的表面上的辅助阵列使得它们适合于不同类型的分析检测的,包括免疫亲和,表面等离子体共振,荧光技术及其他技术。此外,它允许精细控制的实验条件下在那里它可能是很难做到的体内

该协议的目的是要证明的适当使用的功能性蛋白微阵列来检测蛋白质 – 蛋白质相互作用。此应用程序的使用的兴趣高度纯化的分析物(蛋白质)的蛋白质结合活性的高通量平行生化分析。 C-末端(羧基末端)标记的感兴趣的V5融合诱饵蛋白从在酵母菌株的蛋白质纯化优化的高拷贝质粒制备。 C-末端标记确保了全长蛋白质被翻译。在这项研究中使用的蛋白质是Tda1-V5融合蛋白激酶,其使用镍亲和树脂经由His6X标签纯化。该Tda1-V5融合construct为通过串行洗脱使用咪唑梯​​度洗脱最高度富集的馏分在测定法中使用纯化。

Protocol

1.探针制备文化与净化用来检查与其他蛋白质的相互作用如下V5融合激酶探头: 用新鲜挑染酵母菌株Y258(的MATa pep4-3,his4-580,ura3-53,leu2-3,112)含V5融合蛋白(从GATEWAY载体pYES-DEST52表示)。使用分离的蛋白质作为探针上的微阵列。板上完全合成 – 尿嘧啶(SC-URA)/ 2%葡萄糖/琼脂酵母和生长在30℃下从冷冻培养(-80℃的甘油原液)3天。 从单个菌落接种起子培养(5-20​​毫升)?…

Representative Results

使用标准的芯片读取器,以评估Tda1-V5蛋白激酶融合构建体对含有约4200独特S.酵母功能性蛋白微阵列诱饵蛋白质的蛋白质-蛋白质相互作用的活性,观察酵母 GST-融合蛋白。与Genepix软件进一步审讯发现多种结合不同强度的活动。的亲和力从单克隆V5-荧光团缀合的抗体结合至其靶(V5-激酶)导出的信号的梯度强度衡量。 ProCat评分算法2用于鉴定蛋白质-蛋白质相互作用跨两个单独的…

Discussion

提出最初执行使用85独特酵母蛋白激酶-V5融合蛋白进行比较跨越导致新激酶相互作用网络体内 1的识别酵母蛋白激酶不同及相关家族结合活性的协议。作为一个新兴的蛋白质组学分析技术,高通量(HTP)使用蛋白质微阵列依靠肽库,和真核和原核模式生物蛋白质组8,17筛选的发展;后来,这个实验平台应用于高等真核生物如植物和人类5,7。目前还没有商业上可得到的酵?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This work was supported by a grant from the NIH. The assays shown in Figure 1 was performed by Dr. Joseph Fasolo. We thank Dr. Rui Chen for helpful comments.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Petri Dishes VWR NC-10747 or comparable
Bacto yeast extract Difco 0217-17
Bacto peptone Difco 0118-17
Bacto agar Difco 0140-01
Dextrose Sigma D9434
Raffinose Sigma R0514
Galactose Sigma G0750
Sc-Ura drop out media MP Bio 114410622
Small Culture tubes VWR/Fisher
Large Erlenmeyer Flask VWR/Fisher
Centrifuge JA-10 rotor
Centrifuge tubes (500 mL)
Falcon tube (50 mL) VWR/Fisher 21008-951
PBS Tablets Sigma P4417
FastPrep Tubes(2ml screw cap tube)
FastPrep Machine MP Biomedicals 116004500
Zircon Beads BioSpec 11079105
Triton X100 Sigma P4417
DTT Sigma D9779
MgCl2 Sigma M8266 
NaCl Sigma S3014 
Imidazole (pH = 7.4) Sigma I5513 
PMSF Sigma 93482
Complete Inhibitor Cocktail (EDTA Free) Roche 11873580001
Phosphatase inhibitor cocktail 1 sigma P2850
BSA Sigma A2153 
Tween-20 Sigma P1379 
ATP Sigma A1852 
Shaking Incubator (30 °C)
Nickel Affinity Resin Life Technologies R901-01
G25 column GE life sciences 27-5325-01 
Nutator VWR/Fisher
SDS-PAGE Gel (NuPage) Life Technologies
Coomassie Blue Stain Life Technologies
Monoclonal V5 Antibody Life Technologies R960-25
Alexa647 Tagged monoclonal V5 Antibody Life Technologies 451098
Protein Microarrays Kit Life Technologies PAH0525013
Genepix Scanner Molecular Devices
Lifter Slips Thomas Scientific http://www.thomassci.com/Supplies/Microscope-Cover-Glass/_/LIFTER-SLIPS/
Lysis Buffer: 0.1% Triton X-100, 0.5 mM DTT,
2 mM MgCl2, 500 mM NaCl, 50 mM imidazole (pH 7.4), Complete protease inhibitor cocktail – EDTA-free, Phosphatase inhibitor Cocktail 1, 1 mM PMSF  (add just prior to use)
Add the reagents to 1 X PBS (0.01 M phosphate buffer, 0.0027 M potassium chloride, 0.137 M sodium chloride; pH 7.4) to obtain the desired volume of lysis solution
Blocking Buffer: 1% bovine serum albumin (BSA), 0.1% Tween-20 Add the reagents to 1 X PBS to obtain the desired volume of blocking buffer
Probe Buffer: 2 mM MgCl2, 0.5 mM DTT, 0.05% Triton X-100, 50 mM NaCl,500 μM ATP (for kinases), 1% BSA Add the reagent to 1 X PBS to obtain desired volume of probe buffer
Wash Buffer: 0.1% Triton X-100, 500 mM NaCl, 0.5 mM DTT, 50 mM imidazole (pH 7.4),2 mM MgCl2 Add the reagent to 1 X PBS to obtain desired volume of probe buffer
Elution Buffer: 0.1% Triton X-100, 0.5 mM DTT, 2 mM MgCl2, 500 mM NaCl, 50 – 500 mM imidazole (pH 7.4), Complete protease inhibitor cocktail – EDTA-free, Phosphatase inhibitor Cocktail 1, 1 mM PMSF (add just prior to use) Before you begin, it is important to note the concentration gradient of imidazole (50 – 500 mM) and to create separate tubes for each concentration (it is advisable to create the interval using 50 mM increments). Add the reagent to 1 X PBS to obtain desired volume of probe buffer
3x YEP +6% galactose: Dissolve 30 g of yeast extract and  60 g of peptone in 700 ml of H2O, and autoclave. Add 300 ml of filter sterilized 20% galactose (wt/vol)  galactose should not be autoclaved

References

  1. Fasolo, J., et al. Diverse protein kinase interactions identified by protein microarrays reveal novel connections between cellular processes. Genes. 25, 767-778 (2011).
  2. Zhu, X., Gerstein, M., Snyder, M. ProCAT: a data analysis approach for protein microarrays. Genome biology. 7, R110 (2006).
  3. Breitkreutz, A., et al. A global protein kinase and phosphatase interaction network in yeast. Science. 328, 1043-1046 (2010).
  4. Gavin, A. C., et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature. 415, 141-147 (2002).
  5. Jeong, J. S., et al. Rapid identification of monospecific monoclonal antibodies using a human proteome microarray. Mol Cell Proteomics. 11 (6), (2012).
  6. Krogan, N. J., et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature. 440, 637-643 (2006).
  7. Popescu, S. C., et al. Differential binding of calmodulin-related proteins to their targets revealed through high-density Arabidopsis protein microarrays. Proceedings of the National Academy of Sciences of the United States of America. 104, 4730-4735 (2007).
  8. Zhu, H., et al. Global analysis of protein activities using proteome chips. Science. 293, 2101-2105 (2001).
  9. Ptacek, J., et al. Global analysis of protein phosphorylation in yeast. Nature. 438, 679-684 (2005).
  10. Haab, B. B. Antibody arrays in cancer research. Molecular & cellular proteomics. Mol Cell Proteomics. 4 (4), 377-383 (2005).
  11. Kopf, E., Zharhary, D. Antibody arrays–an emerging tool in cancer proteomics. The international journal of biochemistry & cell biology. 39, 1305-1317 (2007).
  12. Berrade, L., Garcia, A. E., Camarero, J. A. Protein microarrays: novel developments and applications. Pharmaceutical research. 28, 1480-1499 (2011).
  13. Balboni, I., Limb, C., Tenenbaum, J. D., Utz, P. J. Evaluation of microarray surfaces and arraying parameters for autoantibody profiling. Proteomics. 8, 3443-3449 (2008).
  14. Gelperin, D. M., et al. Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes & development. 19, 2816-2826 (2005).
  15. Fasolo, J., Snyder, M. Protein microarrays. Methods Mol. Biol. 548, 209-222 (2009).
  16. Im, H., Snyder, M., Coligan, J. E., et al. Preparation of recombinant protein spotted arrays for proteome-wide identification of kinase targets. Current protocols in protein science. 27, Unit 27 24 (2013).
  17. MacBeath, G., Schreiber, S. L. Printing proteins as microarrays for high-throughput function determination. Science. 289, 1760-1763 (2000).

Play Video

Citer Cet Article
Fasolo, J., Im, H., Snyder, M. P. Probing High-density Functional Protein Microarrays to Detect Protein-protein Interactions. J. Vis. Exp. (102), e51872, doi:10.3791/51872 (2015).

View Video