Summary

从血液高效的iPS细胞生成使用附加体和HDAC抑制剂

Published: October 28, 2014
doi:

Summary

在这里,我们描述了一种协议,用于使用基于附加体重编程的策略和组蛋白脱乙酰酶抑制剂的外周血产生的诱导的人多能干细胞。

Abstract

此稿件说明了一个协议,用于建立高效集成的无人类诱导多能干细胞从外周血中使用游离质粒和组蛋白去乙酰化酶(HDAC)抑制剂细胞​​(iPS细胞)。这种方法的优点包括:(1)使用的外周血作为源材料的最小量; (2)nonintegrating重编程载体; (3)具有成本效益的方法,用于产生向量自由iPSCs的; (4)单次转染;及(5)使用的小分子,以促进表观重编程。简言之,将外周血单核细胞(PBMC)从常规采血样品中分离,然后培养中所定义的生长因子,以产生高度增殖红细胞祖细胞群是非常适合进行再编程。 Nonintegrating,表达OCT4,SOX2,KLF4,MYCL,LIN28A和p53的短发夹(SH)RNA非传播游离质粒introdu通过单核转染土木工程署到来自红细胞。表达增强的绿色荧光蛋白的游离基因(绿色荧光蛋白)的共转染允许容易识别转染细胞。表达爱泼斯坦-巴尔核抗原1(EBNA1)一个单独的复制缺陷型的质粒也将被添加到该反应混合物中游离的蛋白的表达增加。然后转染的细胞接种在层照射的小鼠胚胎成纤维细胞(的iMEFs),用于持续重新编程。只要iPSC的样集落核转染后出现在大约十二天后,HDAC抑制剂被加入到培养基中,以方便后生重塑。我们已经发现,包含HDAC抑制剂的常规由2倍增加的完全重新编程的iPSC集落的生成。一次的iPSC集落呈现出典型的人类胚胎干细胞(胚胎干细胞)的形态,它们被轻轻转移到个人IMEF涂覆组织培养板中进行的持续增长和扩展。

Introduction

iPS细胞是从体组织经由一组的多能性基因的最小的异位表达而得。该技术最初是由人成纤维细胞与OCT4,SOX2,KLF4和cMYC的 ,其高度表达在多能状态1的逆转录病毒转导的展示。这些瞬时表达“重编程因子”改变靶细胞的表观遗传学景观和基因表达谱类似于人类胚胎干细胞2。一旦创建了iPS细胞有可能分化成任何类型的组织作进一步调查。因此,它们有望用于再生医学,疾病建模和基因治疗的应用中使用。然而,破坏与整合的病毒基因组有改变内源基因的表达,影响细胞表型的潜力,最终偏置的科学成果。此外,随机的病毒整合可能会导致有害细胞éffects,包括恶性转化3或重新表达致癌基因的转基因4的可能性。未来的临床应用需要非整合的iPSC生成。

附加体,它是染色体外的环状DNA分子,提供了一项战略,以产生成本效益,整合无iPS细胞5。表1所示的附加 ​​型载体的组合表达重编程因子OCT4,SOX2,KLF4,MYCLLIN28A。pCXLE_hOCT3 / 4- shp53-F质粒还含有p53基因的shRNA对TP53的临时抑制,增强细胞的初始化6。复制缺陷型pCXWB-EBNA1载体通过提供核抗原表达7一过性升高促进重编程因子的放大和提高重编程效率。该pCXLE_EGFP质粒可以被添加到核转染混合物为射探测器的目的rmining转染效率或用于细胞分选的应用程序。除P CXWB-EBNA1的,在该协议中使用的附加 ​​型质粒含有的Epstein-Barr病毒起源的病毒复制和EBNA1基因,其宿主细胞8的分裂过程介导的复制和附加体的分区。该附加体都不约而同的用连续的iPSC扩张7丢失。亚克隆和iPS细胞与附加型载体的损失,这可以从eGFP的表达缺失推断的特性,可能会导致完全集成免费的iPSC供将来的临床应用。

固有的iPSC生成的过程是抑制的细胞系特异性基因和多能性相关基因的重新激活。基因表达的调节发生在细胞核内的多个级别,包括修饰的DNA和染色质,以允许转录因子,调节DNA元件,和RNA聚合酶的访问目标基因。通过全球性染色质修饰的后生景观改造是重新表达的一个关键组成部分的多能性的遗传程序。一个具体的染色质修饰是在基因表达的调控是重要的乙酰化的组蛋白在特定的赖氨酸残基,其允许访问通过组蛋白的DNA线圈的张力下降到目标基因。 HDAC抑制剂是小分子已经显示出增强的iPSC重编程和人类胚胎干细胞的自我更新9,10,可能是由于支承乙酰化状态11。下面描述的协议中,适于从使用整合的慢病毒12的现有出版物,提供了从外周血使用附加体和HDAC抑制剂的步骤的分步方法优化的iPSC产生。这里所用的HDAC抑制剂浓度是半那些由洁具所描述的, 等。 如图9所示 ,并经常导致了2倍的增加完全重新编程的iPSC集落,标准游离重编程协议,而不HDAC抑制剂。重新编程的这个水平看齐与我们观察到与慢病毒方法的效率。使用此协议,我们已经有效地产生iPSC的个人老87岁。

Protocol

签署知情同意书,批准由弗雷德·哈钦森癌症研究中心的机构审查委员会和儿童“费城医院,从患者采集外周血标本之前获得所有机构的指导方针的变化。所有的动物实验,包括MEF生成和畸胎瘤的形成被批准的机构动物护理和使用委员会。 外周血单个核细胞和红细胞扩张的1。聚蔗糖分离 – 0天稀释外周血1:1的Dulbecco磷酸盐缓冲盐水(DPBS)。在一个15毫升的圆底聚苯乙烯…

Representative Results

核转染后三天和电镀nucleofected细胞上的iMEFs之前,成功的核转染的效率,应通过对eGFP的荧光显微术进行估计。 图1显示了一个典型的核转染实验用表达绿色荧光蛋白的总细胞群的约5-10%。 重新编程的iPSC克隆将开始核转染后出现大约两个星期。该菌落是具有明确定义的边界大致为圆形的,并且可以由人类胚胎干细胞特性的形态包括:(1)小的,紧凑的细胞具有较?…

Discussion

对于成功的iPSC生成使用此协议的时候,有一些应该考虑几个重要的注意事项。在红细胞膨胀阶段,媒体改变调度必须严格遵守,因为偏差可能导致目标的祖细胞群体的低效刺激和iPSC的产生效率较低。重要的是,使用新鲜地塞米松与各介质变化的新的扩展介质;和QBSF-60基础培养基和地塞米松在存储期间应避光。在核转染,所述的DPBS洗涤是关键,除去从细胞悬浮液过量的溶质可能导致电流从nucleofecto…

Divulgations

The authors have nothing to disclose.

Acknowledgements

作者要感谢来自美国国立卫生研究院的资助下支持这项研究:K08DK082783(AR),P30DK56465(BTS),U01HL099993(BTS),T32HL00715036(SKS)和K12HL0806406(SKS);而JP麦卡锡基金会(AR)。

Materials

Name of Reagent/ Equipment Company Catalog Number Comments/Description
Ficoll-Paque PLUS Fisher Scientific 45-001-750 Store at 4°C. Warm to room temperature before use.
DPBS Life Technologies 14190-250 Store at 4°C.
RPMI 1640 Life Technologies 11875-093 Store at 4°C.
fetal bovine serum (FBS) Life Technologies 10437028 Store at -20°C until needed. Thaw, aliquot, store at 4°C.
dimethyl sulfoxide (DMSO) Sigma-Aldrich 154938 Store at room temperature.
QBSF-60 serum-free medium Fisher Scientific 50-983-234 Store at 4°C.
penicillin/streptomycin Life Technologies 15140122 Store at 4°C.
Cell Line Nucleofector Kit V Lonza VCA-1003 Store at 4°C.
2% gelatin solution Sigma-Aldrich G1393 Store at 4°C, liquify in 37°C water bath before use.
Hank's Balanced Saline Solution (HBSS) Life Technologies 14175-103 Store at 4°C.
Dulbecco's Modified Eagle Medium (DMEM) Life Technologies 11965-092 Store at 4°C.
Iscove's Modified Dulbecco's Medium (IMDM) Life Technologies 12440-061 Store at 4°C.
L-glutamine, 200 mM Life Technologies 25030-081 Aliquot, freeze at -20°C.
non-essential amino acids (NEAA), 100X Life Technologies 11140-050 Store at 4°C, away from light.
DMEM/Ham's F12, 1:1 Fisher Scientific SH30023.02 Store at 4°C.
KnockOut Serum Replacement Life Technologies 10828-028 Aliquot, freeze at -20°C.
sodium pyruvate, 100 mM Life Technologies 11360-070 Store at 4°C.
sodium bicarbonate, 7.5% Life Technologies 25080094 Store at 4°C.
basic fibroblast growth factor (bFGF) Life Technologies PHG0263 Make 10 mg/mL stock in DPBS, aliquot, freeze at -20°C. Once thawed, store at 4°C.
sodium butyrate  Sigma-Aldrich B5887-1G Make 2000X stock (400 mM) in DPBS, aliquot, freeze at -20°C. Once thawed, store at 4°C.
hES Cell Cloning & Recovery Supplement Stemgent 01-0014-500 Store at -20°C until needed. Once thawed, store at 4°C.
ESC-qualified BD matrigel BD Biosciences 35-4277 Thaw overnight on ice at 4°C, aliquot into pre-chilled tubes using pre-chilled pipette tips. Store at -20°C until needed. Thaw at 4°C, use immediately.
StemSpan SFEM  STEMCELL Technologies 9650 Aliquot, freeze at -20°C.
ascorbic acid, powdered Sigma-Aldrich A4403-100MG Make 5 mg/mL stock in DPBS, sterile filter, store at 4°C.
recombinant human stem cell factor (SCF) R & D Systems 255-SC-010 Make 100 μg/mL stock in SFEM, aliquot, freeze at -20°C. Once thawed, store at 4°C.
recombinant human interleukin 3 (IL-3) R & D Systems 203-IL-010 Make 100 μg/mL stock in SFEM, aliquot, freeze at -20°C. Once thawed, store at 4°C.
erythropoietin (EPO) R & D Systems 287-TC-500 Make 1000 U/mL stock in SFEM, aliquot, freeze at -20°C. Once thawed, store at 4°C.
recombinant human insulin-like growth factor 1 (IGF-1) R & D Systems 291-G1-200 Make 100 μg/mL stock in SFEM, aliquot, freeze at -20°C. Once thawed, store at 4°C.
β-mercaptoethanol Sigma-Aldrich M7522 Make 1000X stock (100 mM) in DPBS.
dexamethasone Sigma-Aldrich D4902-25MG Make 50X stock (50 μM) in DPBS, sterile filter, store at 4°C.
SAHA (vorinostat) Cayman Chemical 149647-78-9 Make 2000X stock (400 mM) in DPBS, aliquot, freeze at -20°C. Once thawed, store at 4°C.
12 well tissue culture plate Fisher Scientific 08-772-29
15 mL conical tube Sarstedt 62553002
1.5 mL Eppendorf tube Fisher Scientific 05-408-129
6 well tissue culture plate Fisher Scientific 08-772-1B
35 mm tisue culture plates BD Biosciences 353001
10 mL disposable serological pipettes Fisher Scientific 13-675-20
5 mL disposable serological pipettes Fisher Scientific 13-675-22
2 mL disposable serological pipettes Fisher Scientific 13-675-17
20 μL pipette tips, barrier tips Genessee 24-404
glass Pasteur pipettes Fisher Scientific 13-678-20D
pipette aid Fisher Scientific 13-681-15
pCXLE-hOCT3/4-shp53-F Addgene 27077
pCXLE-hSK Addgene 27078
pCXLE-hUL Addgene 27080
pCXLE-EGFP Addgene 27082
pCXWB-EBNA1 Addgene 37624

References

  1. Takahashi, K., et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 131 (5), 861-872 (2007).
  2. Koche, R. P., et al. Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell. 8 (1), 96-105 (2011).
  3. Baum, C., Kustikova, O., Modlich, U., Li, Z., Fehse, B. Mutagenesis and oncogenesis by chromosomal insertion of gene transfer vectors. Human Gene Therapy. 17 (3), 253-263 (2006).
  4. Okita, K., Ichisaka, T., Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature. 448 (7151), 313-317 (2007).
  5. Yu, J., et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science. 324 (5928), 797-801 (2009).
  6. Hong, H., et al. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature. 460 (7259), 1132-1135 (2009).
  7. Okita, K., et al. A more efficient method to generate integration-free human iPS cells. Nature Methods. 8 (5), 409-412 (2011).
  8. Yates, J. L., Warren, N., Sugden, B. Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature. 313 (6005), 812-815 (1985).
  9. Ware, C. B., et al. Histone deacetylase inhibition elicits an evolutionarily conserved self-renewal program in embryonic stem cells. Cell Stem Cell. 4 (4), 359-369 (2009).
  10. Mali, P., et al. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells. 28 (4), 713-720 (2010).
  11. Azuara, V., et al. Chromatin signatures of pluripotent cell lines. Nature Cell Biology. 8 (5), 532-538 (2006).
  12. Sommer, A. G., et al. Generation of human induced pluripotent stem cells from peripheral blood using the STEMCCA lentiviral vector. J. Vis. Exp. (68), e4327 (2012).
  13. Yoshida, Y., Takahashi, K., Okita, K., Ichisaka, T., Yamanaka, S. Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell. 5, 237-241 (2009).
  14. Abbondanzo, S. J., Gadi, I., Stewart, C. L. Derivation of Embryonic Stem Cell Lines. Methods in Enzymology. 225, 803-823 (1993).
  15. Kim, H. J., Bae, S. C. Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. American Journal of Translational Research. 3 (2), 166-179 (2011).
check_url/fr/52009?article_type=t

Play Video

Citer Cet Article
Hubbard, J. J., Sullivan, S. K., Mills, J. A., Hayes, B. J., Torok-Storb, B. J., Ramakrishnan, A. Efficient iPS Cell Generation from Blood Using Episomes and HDAC Inhibitors. J. Vis. Exp. (92), e52009, doi:10.3791/52009 (2014).

View Video