Summary

Murine Ileocolische Darmresektion mit primärer Anastomose

Published: October 29, 2014
doi:

Summary

Ileocolic resection is commonly performed in several human diseases; however, little is known regarding the impact of intestinal resection on surgical illnesses. This article provides instruction on executing the procedure in mice with high success, providing a means to study the effects of ileocolic resection in models of disease.

Abstract

Intestinal resections are frequently required for treatment of diseases involving the gastrointestinal tract, with Crohn’s disease and colon cancer being two common examples. Despite the frequency of these procedures, a significant knowledge gap remains in describing the inherent effects of intestinal resection on host physiology and disease pathophysiology. This article provides detailed instructions for an ileocolic resection with primary end-to-end anastomosis in mice, as well as essential aspects of peri-operative care to maximize post-operative success. When followed closely, this procedure yields a 95% long-term survival rate, no failure to thrive, and minimizes post-operative complications of bowel obstruction and anastomotic leak. The technical challenges of performing the procedure in mice are a barrier to its wide spread use in research. The skills described in this article can be acquired without previous surgical experience. Once mastered, the murine ileocolic resection procedure will provide a reproducible tool for studying the effects of intestinal resection in models of human disease.

Introduction

Ileocolic resection (ICR) is a common procedure performed in both emergent and elective situations for a variety of illnesses. Crohn’s disease and colon cancers are the two most common indications for ICR. In both illnesses, recurrence in the bowel at the site of surgery represents a major clinical problem. Local recurrence rates for colon cancer remain an issue even with the most aggressive resections1. Following ICR in Crohn’s disease, the disease most frequently (in up to 80%) recurs in the neo-terminal ileum at 1 year after surgery2. Given the impact of these two illnesses and their recurrence after surgery, it is important to understand local intestinal factors after ICR, which may have intrinsic influences on the natural history of these diseases. Further, it is also important to consider anastomotic healing after ICR. In the early post-operative period, anastomotic leaks can have devastating consequences for patients resulting in repeat surgeries, stoma creations, significant morbidity, and even mortality3. Despite the importance of this topic, our current understanding of anastomotic healing remains in its infancy as a subject of research. Animal models of ICR, in particular mice, are an excellent platform for studying the intestinal and anastomotic healing following surgery.

A mouse model of ICR was initially developed by Helmrath et al. to be used as a model of short gut syndrome4. The authors experimented with various diet regiments and suture sizes to optimize animal survival following ICR. They concluded that feeding with liquid diet in the perioperative period and using 9-0 monofilament sutures resulted in an optimal post-operative survival of 88%. Since this initial publication, ICR in mice removing 50% of the small bowel has been used in several studies to explore the dynamics of massive small bowel resection and the adaptive growth response in attempt to develop new therapies for short gut syndrome5,6.

The first application of the ICR mouse model to Crohn’s disease used the IL-10-/- mouse model, which spontaneously develops colitis7. The authors found that after ICR these animals developed inflammation in the neo-terminal ileum similar to that seen in post-operative Crohn’s disease patients, and that this inflammation was dependent on the presence of bacteria7. More recently, this model was used to explore bacterial changes induced by ICR. In Crohn’s disease there is an associated dysbiosis with relative decreases in bacteria known to have anti-inflammatory properties and increases in invasive species of bacteria8,9. The association holds true in cases of post-operative recurrence10. Two studies sought to identify microbial changes resulting from ICR. The first used IL-10 null mice, and performed denaturing gel electrophoresis to compare bacterial similarity between the small bowel and colon after ICR11. This study demonstrated that bacterial populations became similar in the small intestine and colon following ICR. A subsequent study used wild type mice and 16s pyrosequencing for phylogenetic classification of bacterial species post-operatively. This study demonstrated a marked shift in bacterial species resulting from surgery alone with Clostridium species becoming dominant as well as an increase in ϒ-proteobacteria. The results also confirmed the findings of the previous study with similar populations found in the small bowel and colon after ICR12.

ICR is a common procedure for patients with colon cancer involving the cecum and ascending colon, and it is becoming increasingly recognized that the host-response to surgery likely contributes to both local and distant tumor recurrence13. Despite this observation, models of ICR have not been utilized for the study of colorectal cancer and post-operative recurrence. Understanding both the systemic and local immunologic changes resulting from ICR will be important in investigating future therapies. Potential pathways involved in cancer recurrence post ICR include up regulation of growth factors, which may rescue cells from apoptosis and stimulate proliferation, mechanical tumor disruption with cell shedding, and loss of immune surveillance through post-operative immunosuppression13,14.

Mouse models of ICR have the potential to be a powerful tool for the investigation of short bowel syndrome, Crohn’s disease, and colon cancer. They may also provide lessons on how to prevent early post-operative anastomotic complications by further defining the cellular and biochemical pathways involved in healing the newly constructed anastomosis. A major barrier in utilizing the murine ICR model is the technical difficulty. The intestinal anastomosis requires the use of 8-0 or 9-0 suture, an operating microscope, and training in microsurgical techniques. The goal of this article is to provide clear instructions on how to perform ICR in mice with the goal of utilizing this procedure in models of disease.

Protocol

Tiernutzung Protokolle wurden von der Health Science Animal Care und Verwenden Ausschuss an der Universität von Alberta genehmigt. 1. Herstellung der Instrumente, Tiere und Operative-Setup Übertragen Tieren zu einem neuen, sauberen Käfig abwesend aller feste Nahrung 24 Stunden vor dem Eingriff. Sie können den freien Zugang zu Wasser und flüssige Diät ad lib bis zum Zeitpunkt des Verfahrens. Autoklav alle für das Verfahren erforderlichen Instrumente. Saubere Arbeit…

Representative Results

Sterblichkeit und Gewichtsveränderung nach der OP. Die Sterblichkeitsraten folgenden ICR in 129S1 Wildtyp-Mäusen in der Regel ~ 5%. Die häufigste Ursache der Moral ist Darmverschluss an der Anastomose. Andere Todesursachen gehören Anastomoseninsuffizienz und interne Hernie, die zu Verstopfung Darm. Gewichtsverlust kann bis zu 14 Tage nach der Operation zu sehen ist, ist jedoch im allgemeinen nicht signifikant. Mäuse sind in der Regel präoperativen Gewicht komplett wiede…

Discussion

Die murine ICR ist ein leistungsfähiges Modell, das verwendet werden kann, um die Auswirkungen der Operation bei Darmerkrankungen zu untersuchen. Dieser Artikel beschreibt ein Verfahren zur Durchführung ICR bei Mäusen mit einer Erfolgsquote von 95% und keine Probleme mit Gedeihstörungen wie durch stabile Gewichte reflektiert bis zu 28 Tage nach dem Eingriff. Die wichtigsten Herausforderungen für die erfolgreiche ICR gehören die Vermeidung Darm Hindernisse an der Anastomose und Anastomosen Lecks.

<p class="jove…

Divulgations

The authors have nothing to disclose.

Acknowledgements

We would like to acknowledge the funding contributions of the Canadian Surgical Research Fund, the Edmonton Civic Employees Research Assistance Fund, and the Alberta IBD Consortium through a grant from Alberta Innovates.

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
LD101 liquid rodent diet testdiet.com
0.9% NaCl Baxter FKE1324 Injection quality saline
Operating Microscope Ziess
Isoflurane Anesthetic Vaporizer Harvard Apparatus 34-0483
Isoflurane Abbott  05260-05
Glass plate For operating surface
Cotton swabs
Micro Castroviejo Needle holder, curved World Precision Instruments 503377
Castroviejo straight scissors World Precision Instruments 555530S
Dissecting Scissors World Precision Instruments 15922
Dressing Forceps x 2 World Precision Instruments 500363
5-0 silk pre-cut sutures Ethicon A182H For vessel ligation
8-0 Prolene on BV130-5 needle Ethicon 8732H For anastomosis
3-0 Silk on FS-2 needls Ethicon 8665G For abdominal wall closure
Petroleum Jelly Vaseline
10 ml syringe BD biosciences
Povidone-iodine 7.5% surgical Scrub betadine.com
Heat lamps
buprenorphine 0.3 mg/ml Reckitt Benckiser Healthcare Ltd.  PL36699/0006

References

  1. Hallet, J., Zih, F. S., Lemke, M., Milot, L., Smith, A. J., Wong, C. S. Neo-adjuvant chemoradiotherapy and multivisceral resection to optimize R0 resection of locally recurrent adherent colon cancer. European Journal of Surgical Oncology. 40 (6), (2014).
  2. Rutgeerts, P., Geboes, K., Vantrappen, G. Natural history of recurrent Crohn's disease at the ileocolonic anastomosis after curative surgery. Gut. 25 (6), 665-672 (1984).
  3. Davis, D., Rivadeneira, D. Complications of colorectal anastomoses: leaks, strictures, and bleeding. The Surgical clinics of North America. 93 (1), 61-87 (2013).
  4. Helmrath, M. A., VanderKolk, W. E., Can, G., Erwin, C. R., Warner, B. W. Intestinal adaptation following massive small bowel resection in the mouse. Journal of the American College of Surgeons. 183 (5), 441-449 (1996).
  5. Dekaney, C. M., Fong, J. J., Rigby, R. J., Lund, P. K., Henning, S. J., Helmrath, M. A. Expansion of intestinal stem cells associated with long-term adaptation following ileocecal resection in mice. American journal of physiology. Gastrointestinal and liver physiology. 293 (5), (2007).
  6. Speck, K. E., De Cruz, P., et al. Inflammation enhances resection-induced intestinal adaptive growth in IL-10 null mice. The Journal of surgical research. 168 (1), 62-69 (2011).
  7. Rigby, R. J., Hunt, M. R., et al. A new animal model of postsurgical bowel inflammation and fibrosis: the effect of commensal microflora. Gut. 58 (8), 1104-1112 (2009).
  8. Kostic, A. D., Xavier, R. J., Gevers, D. The Microbiome in Inflammatory Bowel Disease: Current Status and the Future Ahead. Gastroenterology. , 1-11 (2014).
  9. Gevers, D., Kugathasan, S., et al. The Treatment-Naive Microbiome in New-Onset Crohn's Disease. Cell host & microbe. 15 (3), 382-392 (2014).
  10. Ahmed, T., Rieder, F., Fiocchi, C., Achkar, J. P. Pathogenesis of postoperative recurrence in Crohn's disease. Gut. 60 (4), 553-562 (2011).
  11. Borowiec, A., Sydora, B., et al. Small bowel fibrosis and systemic inflammatory response after ileocolonic anastomosis in IL-10 null mice. Journal of Surgical Research. 178 (1), 147-154 (2012).
  12. Devine, A. A., Gonzalez, A., et al. . Impact of Ileocecal Resection and Concomitant Antibiotics on the Microbiome of the Murine Jejunum and Colon. 8 (8), (2013).
  13. Bij, G. J., Oosterling, S. J., Beelen, R. H. J., Meijer, S., Coffey, J. C., van Egmond, M. The perioperative period is an underutilized window of therapeutic opportunity in patients with colorectal cancer. Annals of surgery. 249 (5), (2009).
  14. Scott, A. D., Uff, C., Phillips, R. K. Suppression of macrophage function by suture materials and anastomotic recurrence of Crohn's disease. The British journal of surgery. 80 (3), (1993).
  15. Kiernan, J. A. Intestinal anastomosis in the rat facilitated by a rapidly digested internal splint and indigestible but absorbable sutures. Journal of Surgical Research. 45, 427-431 (1988).
  16. Andersen, T. L., et al. Action of matrix metalloproteinases at restricted sites in colon anastomosis repair: an immunohistochemical and biochemical study. Surgery. 140 (1), 72-82 (2006).
  17. Thompson, S. K., Chang, E. Y., Jobe, B. A. Clinical review: Healing in gastrointestinal anastomoses, Part I. Microsurgery. 26 (3), 131-136 (2006).
check_url/fr/52106?article_type=t

Play Video

Citer Cet Article
Perry, T., Borowiec, A., Dicken, B., Fedorak, R., Madsen, K. Murine Ileocolic Bowel Resection with Primary Anastomosis. J. Vis. Exp. (92), e52106, doi:10.3791/52106 (2014).

View Video